Кривошипно шатунный механизм и его приспособления. Тема «Назначение и устройство кривошипно – шатунного механизма двигателей внутреннего сгорания

Кривошипно-шатунный механизм многоцилиндровых двигателей включает следующие детали: блок цилиндров с головкой и уплотняющей прокладкой, поршни, поршневые кольца, поршневые пальцы, шатуны, коленчатый вал, маховик и картер двигателя с поддоном.

Поршень с кольцами и пальцем образует поршневую группу, блок с головкой и картером - корпус двигателя.

По расположению цилиндров двигатели делятся на рядные и V-образные.
У рядного двигателя все цилиндры расположены в одну линию (ряд); поэтому при большом количестве цилиндров длина общих деталей двигателя (блока цилиндров, головки, коленчатого и распределительного вала и др.), а следовательно, и длина всего двигателя получается весьма значительной.
При V-образной конструкции двигателя цилиндры расположены в два ряда в двух секциях блока и обычно под углом 90° между их осями. В этом случае длина двигателя и его общих деталей намного сокращается, а конструкция его получается более компактной с соответствующим снижением веса, приходящегося на единицу развиваемой мощности (удельный вес). Благодаря указанным преимуществам двигатели с V-образным расположением цилиндров получают все большее применение в отечественных автомобилях.

является главной базисной деталью двигателя, к которой крепятся все остальные его детали и механизмы. Блок цилиндров двигателя отливают из чугуна или алюминиевого сплава. В той же отливке выполнены: картер, стенки рубашки охлаждения, окружающей цилиндры двигателя, впускные и выпускные каналы, заканчивающиеся гнездами клапанов, и клапан- пая камера, где размещаются детали . Внутренняя поверхность цилиндров служит направляющей для поршней, ее растачивают под требуемый размер и шлифуют. Эта поверхность называется зеркалом цилиндра. В некоторых автомобилях цилиндры выполнены в виде вставных гильз, омываемых охлаждающей жидкостью. Такие гильзы называются мокрыми, в нижней части они имеют уплотняющие прокладки. Вверху уплотнение достигается с помощью головки цилиндров. Сверху блок закрывают головкой цилиндров, изготовленной из алюминиевого сплава.

Головка имеет рубашку охлаждения и камеры сгорания с отверстиями для свечей зажигания В головке цилиндров двигателя находятся также впускные и выпускные каналы. Крепление головки цилиндров к блоку осуществляется шпильками с гайками или болтами. Герметичность прилегания головки к блоку цилиндров достигается с помощью металлоасбестовой прокладки.

Поршень служит для передачи давления газов через поршневой палец на шатун, которые он воспринимает при рабочем ходе, кроме того, при помощи поршня осуществляются подготовительные такты. Поршни, изготовленные из алюминиевого сплава, имеют днище и юбку овального сечения. Поверхность юбки лужёная. Нерабочие поверхности юбки вырезаны, что обеспечивает проход противовесов коленчатого вала при нижнем положении поршня и снижает вес поршня. Юбка с обеих сторон имеет несквозной Т-образный разрез и выемки в плоскости поршневого пальца.


Поршневые кольца предотвращают прорыв газов в картер двигателя и обеспечивают съем излишков масла со стенок цилиндра. На каждом поршне установлено два компрессионных кольца и одно маслосъемное.

Компрессионные кольца с корректированным давлением и скручивающиеся (с верхней внутренней стороны они имеют фаску). Верхнее компрессионное кольцо хромированное, остальные кольца луженые. Маслосъемное кольцо имеет прорези для отвода масла.

Поршневой палец служит для шарнирного соединения поршня с шатуном. Поршневой палец плавающего типа закреплен в поршне двумя стопорными кольцами. Палец смещен на 1,5 мм в правую сторону от оси цилиндра, что уменьшает стук поршня при переходе его через в. м. т.

Шатун соединяет поршень с шатунной шейкой коленчатого вала и служит для передачи усилия от поршня на коленчатый вал при рабочем ходе и для передачи движения поршня от коленчатого вала при подготовительных тактах. Шатун изготовляют из стали двутаврового сечения. В верхнюю головку шатуна запрессована тонкостенная, свернутая из листовой бронзы втулка. В нижней головке установлены тонкостенные взаимозаменяемые сталебаббитовые вкладыши. Крышка крепится к шатуну двумя болтами.

Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, который затем через маховик поступает на силовую передачу. Пятиопорный коленчатый вал с противовесами отлит из магниевого чугуна. Шатунные и коренные шейки сделаны полыми, что снижает вес вала. Полости шатунных шеек закрыты пробками на резьбе и служат грязеуловительными камерами. Из коренных шеек к шатунным масло подводится по трубкам, заделанным в валу.

Вал установлен в перегородках картера на пяти подшипниках с тонкостенными сталебаббитовыми вкладышами. Крышки коренных подшипников отлиты из алюминиевого сплава (дюралюминия), каждая из них крепится к блоку двумя шпильками. Осевая фиксация вала осуществляется передним подшипником, по обеим сторонам которого установлены сталебаббитовые упорные кольца.

уменьшает неравномерность работы двигателя, выводит поршни из мертвых точек, облегчает пуск двигателя и плавное трогание автомобиля с места.

Маховик прикреплен к фланцу коленчатого вала четырьмя шлифованными болтами. На задней шейке вала имеется маслоотражательный гребень, входящий в выточку подшипника, и установлен сальник. На переднем конце вала закреплены на шпонках упорный диск, шестерня, маслоотражатель и шкив привода вентилятора. К шкиву прикреплена грязеотражательпая шайба. В торец вала ввернут храповик пусковой рукоятки. Вал уплотнен в крышке распределительных шестерен самоподвижным резиновым сальником.

Картером называется нижняя часть двигателя, отлитая вместе с блоком цилиндров. Картер служит основанием для установки коленчатого вала и других деталей и частей двигателя. Снизу к картеру крепится болтами на уплотняющей прокладке поддон, защищающий двигатель от загрязнения и являющийся резервуаром для масла.

Двигатель подвешен к подмоторной раме на трех опорах с резиновыми подушками. Две опоры расположены в передней части блока, а одна - на задней крышке картера коробки передач.

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

У четырехцилиндрового двигателя кривошипно-шатунный механизм состоит из:

Блока цилиндров с картером, - головки блока цилиндров, - поддона картера двигателя, - поршней с кольцами и пальцами, - шатунов, - коленчатого вала, - маховика.

В состав КШМ кривошипно-шатунного механизма двигателя входит две группы деталей: неподвижные и подвижные.

К неподвижным деталям относятся блок цилиндров, служащий основой двигателя, цилиндр, головки блока или головки цилиндров и поддон картера.

Подвижными деталями являются поршни с кольцами и поршневыми пальцами, шатун, коленчатый вал, маховик.

Кривошипно-шатунный механизм воспринимает давление газов при такте сгорание-расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Материал и конструкция основных деталей КШМ. Кривошипно-шатунный механизм состоит из: блока цилиндров с картером, головки цилиндров, поршней с кольцами, поршневых пальцев, шатунов, коленчатого вала, маховика и поддона картера.

Блок цилиндров. Блок цилиндров является основной деталью двигателя к которой крепятся все механизмы и детали.

Цилиндры в блоках изучаемых двигателей расположены У-образно в два ряда под углом 90° (рис. 1).

Блоки цилиндров отливают из чугуна (ЗИЛ-130) или алюминиевого сплава. В той же отливке выполнены картер и стенки полости охлаждения, окружающие цилиндры двигателя.

В блоке двигателя устанавливают вставные гильзы, омываемые охлаждающей жидкостью. Внутренняя поверхность гильзы служит направляющей для поршней. Гильзу растачивают под требуемый размер и шлифуют. Гильзы, омываемые охлаждающей жидкостью, называются мокрыми. Они в нижней части имеют уплотняющие кольца из специальной резины или медные. Вверху уплотнение гильз достигается за счет прокладки головки цилиндров.

Увеличение срока службы гильз цилиндров достигается в результате запрессовки в наиболее изнашиваемую (верхнюю) их часть коротких тонкостенных гильз из кислотоупорного чугуна. Применение такой вставки снижает износ верхней части гильзы в 2--4 раза.

Блок цилиндров У-образного двигателя ЗИЛ-130 сверху закрыт двумя головками из алюминиевого сплава . В головке цилиндров двигателя ЗИЛ-130 размещены камеры сгорания, в которых имеются резьбовые отверстия для свечей зажигания. Для охлаждения камер сгорания в головке вокруг них выполнена специальная полость.

На головке цилиндров закреплены детали газораспределительного механизма. В головке цилиндров выполнены впускные и выпускные каналы и установлены вставные седла и направляющие втулки клапанов. Для создания герметичности между блоком и головкой цилиндров установлена прокладка, а крепление головки к блоку цилиндров осуществлено шпильками с гайками. Прокладка должна быть прочной, жаростойкой и эластичной. В двигателе ЗИЛ-130 она сталеасбестовая, . Для уплотнения стальной прокладки в расточку на нижней плоскости головки цилиндра запрессовано стальное кольцо с острым выступом.

Снизу картер двигателя закрыт поддоном, выштампованным из листовой стали. Поддон защищает картер от попадания пыли и грязи и используется в качестве резервуара для масла. Поддон крепится к плоскости разъема болтами, а для обеспечения герметичности соединения применяют прокладки из картона или из клееной пробковой крошки.

Во время работы двигателя в картер проникают газы, что может повлечь за собой повышение давления, прорыв прокладок и вытекание масла. Поэтому картер через специальную трубку (сапун) сообщается с атмосферой.

Поршень воспринимает давление газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал. Поршень представляет собой перевернутый цилиндрический стакан, отлитый из алюминиевого сплава (рис. 2). В верхней части поршня расположена головка с канавками, в которые вставлены поршневые кольца. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются приливы-бобышки с отверстиями для поршневого пальца.

При работе двигателя поршень, нагреваясь, расширится и, если между ним и зеркалом (внутреннюю поверхность цилиндра или его гильзы называют зеркалом) цилиндра не будет необходимого зазора, заклинится в цилиндре, и двигатель прекратит работу. Однако большой зазор между поршнем и зеркалом цилиндра также нежелателен, так как это приводит к прорыву части газов в картер двигателя, падению давления в цилиндре и уменьшению мощности двигателя. Чтобы поршень не заклинивался при прогретом двигателе, головку поршня выполняют меньшего диаметра, чем юбку, а саму юбку в поперечном сечении изготавливают не цилиндрической формы, а в виде эллипса с большей осью его в плоскости, перпендикулярной поршневому пальцу. На юбке поршня может быть разрез. Благодаря овальной форме и разрезу юбки предотвращается заклинивание поршня при работе прогретого двигателя.

Общее устройство поршней всех двигателей принципиально одинаковое, но каждый из них отличается диаметром и рядом особенностей, присущих только данному двигателю. Например, в головке поршня двигателя ЗИЛ-130 залито чугунное кольцо, в котором сделана канавка под верхнее компрессионное кольцо. Такая конструкция способствует уменьшению износа канавки под поршневое кольцо.

Поршни двигателя ЗИЛ-130 после механической обработки покрывают оловом, что способствует лучшей приработке и уменьшению износа их в первоначальный период работы двигателя.

Поршневые кольца , применяемые в двигателе, подразделяются на компрессионные и маслосъемные. Компрессионные кольца уплотняют зазор между поршнем и цилиндром и служат для уменьшения прорыва газов из цилиндров в картер, а маслосъемные снимают излишки масла с зеркала цилиндров и не допускают проникновения масла в камеру сгорания. Кольца, изготовленные из чугуна или стали, имеют разрез (замок) (см. рис. 2).

При установке поршня в цилиндр поршневое кольцо предварительно сжимают, в результате чего обеспечивается его плотное прилегание к зеркалу цилиндра при разжатии. На кольцах имеются фаски, за счет которых кольцо несколько перекашивается и быстрее притирается к зеркалу цилиндра, и уменьшается насосное действие колец. Количество колец, устанавливаемых на поршнях двигателей, неодинаковое. На поршнях двигателей ЗИЛ-130 три компрессионных кольца, два верхних хромированы по поверхности, соприкасающейся с гильзой. Маслосъемное кольцо собрано из четырех отдельных элементов -- двух тонких стальных разрезных колец и двух гофрированных стальных расширителей (осевого и радиального).

Поршневой палец шарнирно соединяет поршень с верхней головкой шатуна. Палец изготовлен в виде пустотелого цилиндрического стержня, наружная поверхность которого закалена нагревом током высокой частоты.

На двигателе ЗиЛ-130 применяются «плавающие» пальцы, т. е. такие, которые могут свободно поворачиваться как в верхней головке шатуна, так и в бобышках поршня, что способствует равномерному износу пальца. Во избежание задиров цилиндров при выходе пальца из бобышек осевое перемещение его ограничивается двумя разрезными стальными кольцами, установленными в выточках в бобышках поршня.

Шатун служит для соединения коленчатого вала с поршнем. Через шатун давление на поршень при рабочем ходе передается на коленчатый вал. При вспомогательных тактах (впуск, сжатие и выпуск) через шатун поршень приводится в действие от коленчатого, вала. Шатун (рис. 3) состоит из стального стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхней установлен поршневой палец, а нижняя закреплена на шатунной шейке коленчатого вала. Для уменьшения трения в верхнюю головку шатуна запрессована бронзовая или биметаллическая с бронзовым слоем втулка, а в нижнюю, состоящую из двух частей, установлены тонкостенные вкладыши, представляющие собой стальную ленту, внутренняя поверхность которой покрыта тонким слоем антифрикционного сплава (ЗиЛ-130 - высоко- оловянистый алюминий). Обе части нижней головки шатуна скреплены двумя болтами, гайки которых во избежание самоотвертывания фиксируются. В двигателе ЗИЛ-130 под гайки подкладываются специальные шайбы, момент затяжки гаек 80...90,Н-м., а самоотвертыванию препятствуют специальные штампованные стопорные гайки. Затяжку стопорной гайки необходимо производить путем ее поворота на 1,5 ... 2 грани от положения соприкосновения о основной гайкой.

На стержне шатуна выштампован номер детали, а на крышке метка. Номер на шатуне и метка на его крышке всегда должны быть обращены в одну сторону. К верхней и нижней головкам шатуна подводится масло: к нижней головке -- через канал в коленчатом валу, а к верхней -- через прорезь. Из нижней головки шатуна масло через отверстие выбрызгивается на стенки цилиндров.

В двигателях на одной шатунной шейке коленчатого вала закреплено по два шатуна. Для правильной их сборки с поршнями нужно помнить, что шатуны правого ряда цилиндров собраны с поршнями так, что номер на шатуне обращен назад по ходу автомобиля (см. рис. 3), а левого ряда -- вперед, т. е. совпадает с надписью на поршне.

Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, который затем через маховик передается агрегатам трансмиссии.

В двигателе ЗиЛ-130 коленчатый вал стальной.Коленчатый вал (рис. 4) состоит из шатунных и коренных шлифованных шеек, щек и противовесов. На переднем конце вала двигателей ЗМЗ-53-12 и ЗИЛ-130 имеется углубление для шпонки распределительной шестерни и шкива привода вентилятора, а также нарезное отверстие для крепления храповика; задняя часть вала выполнена в виде фланца, к которому болтами прикреплен маховик. В углублении задней торцовой части коленчатого вала расположен подшипник ведущего вала коробки передач.

Количество и расположение шатунных шеек коленчатого вала зависит от числа цилиндров. В V-образном двигателе количество шатунных шеек в два раза меньше числа цилиндров, так как на одну шатунную шейку вала установлено по два шатуна -- один левого и другой правого рядов цилиндров.

Шатунные шейки коленчатого вала многоцилиндровых двигателей выполнены в разных плоскостях, что необходимо для равномерного чередования рабочих тактов в разных цилиндрах.

В восьмицилиндровых V-образных двигателях коленчатые валы имеют по четыре шатунные шейки, расположенные под углом в 90°.

В двигателе число коренных шеек коленчатого вала на одну больше, чем шатунных, т. е. каждая шатунная шейка с двух сторон имеет коренную. Такой коленчатый вал называют полноопорным.

Коренные и шатунные шейки коленчатого вала соединены между собой щеками.

Для уменьшения центробежных сил, создаваемых кривошипами, на коленчатом валу выполнены противовесы, а шатунные шейки сделаны полыми. Для повышения твердости и увеличения срока службы поверхность коренных и шатунных шеек стальных валов закаливают нагревом токами высокой частоты.

Коренные и шатунные шейки вала соединены каналами (сверлениями) в щеках вала. Зти каналы предназначены для подвода масла от коренных подшипников к шатунным.

В каждой шатунной шейке вала имеется полость, которая выполняет роль грязеуловителя. Сюда поступает масло от коренных шеек. При вращении вала частицы грязи, находящиеся в масле, под действием центробежных сил отделяются от масла и оседают на стенке грязеуловителя, а к шатунным шейкам поступает очищенное масло. Очистка грязеуловителей осуществляется через завернутые в их торцах резьбовые пробки только при разборке двигателя.

Перемещение вала в продольном направлении ограничивается упорными сталебаббитовыми шайбами, которые расположены по обе стороны первого коренного подшипника или четырьмя сталеалюминиевыми полукольцами, установленными в выточке задней коренной опоры. В местах выхода коленчатого вала из картера двигателя имеются сальники и уплотнители, предотвращающие утечку масла.

На переднем конце вала установлен резиновый самоподжимный сальник, а на заднем конце выполнена маслосгонная резьба или маслоотражательный буртик.

В заднем коренном подшипнике сделаны маслоулови-тельные каналы, в которые сбрасывается масло с маслосгонной резьбы или маслоотражательного буртика и установлен сальник, состоящий из двух кусков асбестового шнура.

Шатунные и коренные подшипники. В работающем двигателе нагрузки на шатунные и коренные шейки коленчатого вала очень велики. Для уменьшения трения коренные шейки, как и шатунные, расположены в подшипниках скольжения, которые выполнены в виде вкладышей, аналогичных шатунным. Вкладыши каждого коренного или шатунного подшипника состоят из двух половинок, устанавливаемых в нижней разъемной головке шатуна и в гнезде блока и крышке коренного подшипника. От провертывания вкладыши удерживаются выступом, входящим в паз шатунного или коренного подшипника. Крышки коренных подшипников закреплены при помощи болтов и гаек, которые для предотвращения от самоотвертывания зашплинтованы проволокой либо застопорены замковыми пластинами.

Маховик уменьшает неравномерность работы двигателя, выводит поршни из мертвых точек, облегчает пуск двигателя и способствует плавному троганию автомобиля с места. Маховик изготовлен в виде массивного чугунного диска и прикреплен к фланцу коленчатого вала болтами с гайками. При изготовлении маховик балансируется вместе с коленчатым валом. Для предотвращения нарушения балансировки при разборке двигателя маховик установлен на несимметрично расположенные штифты или болты.

Картер двигателя , отлитый заодно с блоком цилиндров, является базисной (основной) деталью. К картеру крепятся детали кривошипно-шатунного и газораспределительного механизмов. Для повышения жесткости внутри картера выполнены ребра, в которых расточены гнезда коренных подшипников коленчатого вала и опорных шеек распределительного вала.

Снизу картер закрыт поддоном, выштампованным из тонкого стального листа.

Поддон является резервуаром для масла и в то же время защищает детали двигателя от пыли и грязи. В нижней части поддона предусмотрено отверстие для выпуска масла, закрываемое резьбовой пробкой. Поддон прикреплен к картеру болтами. Чтобы не было утечки масла, между поддоном и картером установлены прокладки и резиновые уплотнители.

Неисправности и способы их устранения. При значительных изнашиваниях и поломках детали КШМ восстанавливают или заменяют. Эти работы, как правило, выполняют, отправляя в централизованный ремонт.

Закоксование поршневых колец в канавках можно устранить без разборки двигателя. Для этого в конце рабочего дня, пока двигатель не остыл, в каждый цилиндр через отверстие для свечей зажигания заливают по 20 г смеси равных частей денатурированного спирта и керосина. Утром двигатель пускают и после его работы 10-15 мин на холодном ходу останавливают и заменяют масло.

Диагностирование кривошипно-шатунного механизма производится на посту Д-2. При выявлении пониженных тяговых качествах, замеренных во всех цилиндрах автомобиля на стенде тягово-экономических качеств.

Компрессию двигателя определяют при вывернутых свечах у прогретого двигателя при t = 70-80°С и полностью открытых воздушных и дроссельных заслонках. Установив резиновый наконечник компрессометра в отверстие свечи проверяемого цилиндра, проворачиваем коленчатый вал стартером на 10-15 оборотов и записываемпоказания монометра. Компрессия должна быть для исправного автомобиля 0,75 - 0,80 мПа. Разница в показателях между цилиндрами не должна быть более 0,07 - 0,1 мПа.

В результате износа цилиндра, поршня и поршневых колец происходит падение компрессии (давления конца сжатия), мощности, уменьшается частота вращения коленчатого вала, увеличивается расход топлива и смазочного масла, появляется дым в картере двигателя. Эти же явления могут наблюдаться и в результате закоксовывания поршневых колец. Падение компрессии в дизельных двигателях сильно затрудняет их пуск, особенно при низких температурах.

Детонационные стуки при работе карбюраторного двигателя на бензине соответствующей марки и при правильной установке зажигания возникают при повышенных отложениях нагара в камере сгорания и перегреве деталей. Преждевременная вспышка топлива также происходит в результате перегрева деталей и отложения нагаров.

Стуки поршней, пальцев, а также стуки в шатунных и коренных подшипниках возникают при сильном увеличении зазоров в сопряжениях этих деталей в процессе их износа.

Падение давления масла в смазочной системе происходит из-за увеличения зазоров в шатунных и коренных подшипниках.

Типы и виды КШМ

а) Несмещенный (центральный) кшм, у которого ось цилиндра пересекается с осью коленчатого вала.

б) Смещенный кшм, у которого ось цилиндра смещена относительно оси коленчатого вала на величину а;

в) V-образный кшм (в том числе с прицепным шатуном), у которого два шатуна, работающие на левый и правый цилиндры, размещены на одном кривошипе коленчатого вала.

Информационная модель технологического процесса боронования. Типы рабочих органов борон. Конструктивные компоновки дисковых и зубовых борон. Графический и аналитический методы расчёта основных конструктивных параметров дисковых и зубовых борон.

Сейчас существуют бороны, изготавливаемые двумя основными видами рабочих органов: дисковые бороны (похожи на тарельчатые диски) и зубовые бороны (в виде зубьев). Зубья – это особые металлические стержни, имеющие длину 100 миллиметров. Они располагаются на раме таким образом, что работая с их помощью, никакой из них не пойдет по следу другого. Также применяют сетчатые бороны, которые не имеют жесткую раму. А на каменистых почвах зачастую работают бороны, имеющие зубья похожие на пластинчатые пружины.

Кривошипно-шатунный механизм (КШМ) двигателя

Кривошипно-шатунным называется такой механизм, который осуществляет рабочий процесс силового агрегата. Главное предназначение кривошипно-шатунного механизма – преобразование возвратно-поступательного перемещения всех поршней во вращательное движение коленвала.

Кривошипно-шатунный механизм определяет тип силового агрегата по рас-по-ло-же-нию цилиндров. В автомобильных двигателях (см. устройство двигателя автомобиля) ис-поль-зу-ют-ся различные варианты кривошипно-шатунных механизмов:

  • Однорядные кривошипно-шатунные механизмы. Перемещение поршней может быть вертикальным либо под углом. Используются в рядных двигателях;
  • Двухрядные кривошипно-шатунные механизмы. Перемещение поршней только под углом. Используются в V-образных двигателях;
  • Одно- и двухрядные кривошипно-шатунные механизмы. Перемещение поршней горизонтальное. Применяются в случае, если габаритные размеры мотора по высоте ограничены.

Составляющие кривошипно-шатунного механизма подразделяются на

  • Подвижные – поршни, пальцы и поршневые кольца, маховик и коленчатый вал, шатуны;
  • Неподвижные – цилиндры, головка блока цилиндров (ГБЦ), блок цилиндров, картер, прокладка ГБЦ и поддон.

Кроме этого к кривошипно-шатунному механизму относятся разнообразные кре-пеж-ные элементы, а также шатунные и крепежные подшипники.

При рассмотрении устройства КШМ необходимо выделить основные элементы его конструкции: коленвал, коренная шейка, шатунная шейка, шатуны, вкладыши, поршневые кольца (маслосъемные и компрессионные), пальцы и поршни (см. работа поршня).



Сложная конструкция вала обеспечивает получение и передачу энергии от поршня с шатуном на последующие узлы и агрегаты. Сам вал собран из элементов, называемых коленами. Колена соединены цилиндрами, расположенными со смещением относительно основной центральной оси в определенном порядке. На техническом языке название этих цилиндров - шейки. Те шейки, что смещены, крепятся к шатунам, соответственно и название - шатунные. Шейки, расположенные вдоль основной оси - коренные. За счет расположения шатунных шеек со смещением относительно центральной оси образуется рычаг. Поршень, опускаясь вниз, через шатун заставляет проворачиваться коленчатый вал.

Варианты конструкций вала представлены на следующем рисунке.



В зависимости от числа цилиндров, а также конструктивных решений ДВС по рас-по-ло-же-нию цилиндров бывает однорядный или двухрядный.

В первом случае (1) цилиндры расположены в одной плоскости относительно коленчатого вала. Если конкретнее, то все они на двигателе расположены вертикально, по центральной оси, а сам вал находится внизу. В двухрядном двигателе (поз. 2 и 3), цилиндры размещены в два ряда под углом друг к другу 60, 90 или 180°, то есть противоположно друг к другу. Возникает вопрос: «А зачем?». Обратимся к физике. Энергия от сгорания рабочей смеси очень большая и значительная доля ее погашения приходится на коренные шейки коленчатого вала, которые хоть и железные, но имеют определенный запас прочности и ресурса. В четырехцилиндровом двигателе автомобиля этот вопрос решается просто: 4 цилиндра - 4 такта рабочего цикла по очереди. В итоге нагрузка на коленвал равномерно распределяется на всех участках. В тех ДВС, где цилиндров больше, или требуется большая мощность, их размещают в «V»-образном виде, дополнительно смягчая нагрузку на коленчатый вал. Таким образом, энергия гасится не вертикально, а под углом, что зна-чи-тель-но смягчает нагрузку на коленчатый вал.

После краткого рассмотрения устройства КШМ необходимо также уделить внимание коленчатому валу. Говоря о нагрузке на коленчатый вал, стоит остановиться на под-шип-ни-ках шеек коленвала. Рассмотрим соединение шатуна с коленчатым валом двигателя.



Те перегрузки, что испытывает вал, не под силу шариковым подшипникам. Здесь и огромное давление, высокая температура, труднодоступность смазки трущихся элементов и высокая скорость вращения. Поэтому именно для шеек применяются подшипники сколь-же-ния, которые обеспечивают работу всего двигателя. Вращение коленчатого вала происходит на вкладышах. Вкладыши делятся на коренные и шатунные. Из коренных вкладышей образуется кольцо вокруг коренных шеек вала. Из шатунных вкладышей по аналогии - вокруг шатунных шеек. Для уменьшения трения скользящие поверхности подшипников и шеек смазываются маслом, подаваемым через отверстия в коленвале под высоким дав-ле-ни-ем.

Значительную работу по обеспечению равномерности и плавности работы двигателя автомобиля выполняет маховик, о котором упоминалось ранее. Это зубчатое колесо на конце вала сглаживает перебои во вращении коленвала и обеспечивает совершение всех «холостых» тактов рабочего цикла каждого цилиндра ДВС.

Теперь обратимся к конструкции поршня двигателя.



Сам поршень представляет собой перевернутую вверх дном банку. Это самое дно имеет плавно вогнутую форму, что улучшает равномерность нагрузки на поршень при совершении рабочего хода и образование рабочей смеси. Поршень крепится к шатуну через палец с подшипником, обеспечивающим колебательные движения шатуна. Стенки поршня носят название «юбка». Она имеет, на первый взгляд, округлую форму, но есть едва заметные отличия.

Первое - это утолщение стенок юбки в направлениях движения шатуна. Поршень с шатуном через палец крепления давят поочередно друг на друга в одной плоскости. В той, которой собственно и двигается шатун относительно поршня. Следовательно, стенки поршня испытывают там большую нагрузку и давление, поэтому и сделаны толще.

Второе - это сужение диаметра юбки к низу. Сделано это для недопущения заклинивания поршня в цилиндре при нагреве и обеспечения смазки трущихся поверхностей юбки поршня и стенки цилиндра. Сами стенки цилиндра настолько гладко и ювелирно выполнены, что сравнимы с поверхностью зеркала. Но тогда остается зазор, который существенно влияет на герметичность цилиндра при такте сжатия и рабочего хода.

Для решения этих противоположных по смыслу проблем, на юбке поршня пре-дус-мот-ре-ны кольца. Именно через них сам поршень соприкасается со стенками цилиндра. На каждом поршне имеется два типа колец - компрессионные и маслосъемные. Комп-рес-си-он-ные кольца обеспечивают герметичность за счет давления сгораемых газов.

Маслосъемные кольца говорят сами за себя. Остатков масла, поступающего для смягчения трения в связке поршень-цилиндр, не должно оставаться при процессе горения топливно-воздушной смеси. Иначе возможна детонация, засорение свечей или форсунок остатками тяжелых фракций нефтяных продуктов, присутствующих в масле. А все это нарушает весь рабочий цикл. Поэтому масло, впрыскиваемое на стенки цилиндра при «холостых» тактах, снимается маслосъемными кольцами при рабочем ходе поршня.

Все цилиндры двигателя размещены в едином корпусе, который называется блоком цилиндров двигателя. Его конструкция довольно сложна. В нем многочисленное количество каналов для всех систем двигателя, а также он выполняет несущую основу для многих деталей и компонентов для силовой установки в целом.

Рассмотрим схему работы КШМ.



Поршень располагается на максимально удаленном расстоянии от коленчатого вала. Шатун и кривошип выстроены в одной линии. В тот момент, когда в цилиндр проникает горючее, происходит процесс возгорания. Продукты горения, в частности, расширяющие газы, способствуют перемещению поршня к коленчатому валу. Одновременно с этим перемещается также и шатун, нижняя головка которого проворачивает коленчатый вал на 180°. Затем шатун и его нижняя головка перемещаются и проворачиваются обратно, занимая исходную позицию. Поршень тоже возвращается в свое первоначальное положение. Такой процесс происходит в круговой последовательности.

По описанию работы КШМ видно, что кривошипно-шатунный механизм является главным механизмом мотора, от работы которого полностью зависит исправность транс-порт-но-го средства. Таким образом, этот узел необходимо постоянно контролировать, и при любом подозрении на неисправность, следует вмешиваться и устранять ее незамедлительно, так как результатом различных поломок кривошипно-шатунного механизма может ока-зать-ся полная поломка силового агрегата, ремонт которого очень дорогостоящий.

К основным признакам неисправности КШМ относятся следующие:

  • Падение мощностных показателей двигателя;
  • Появление посторонних шумов и стуков;
  • Увеличенный расход масла;
  • Возникновение дыма в отработанных газах;
  • Перерасход топлива.


Шумы и стуки в моторе возникают из-за износа его главных составляющих и возникновение между сопряженными составляющими увеличенного зазора. При износе цилиндра и поршня, а также при возникновении большего зазора между ними появляется металлический стук, который удается отчетливо услышать при работе холодного мотора. Резкий и звонкий металлический стук при любых режимах работы мотора говорит об увеличенном зазоре между втулкой, верхней головки шатуна и поршневым пальцем. Усиление стука и шума при быстром увеличении числа оборотов коленвала свидетельствует об износе вкладышей шатунных или коренных подшипников, причем более глухой стук говорит об износе вкладышей коренных подшипников. Если износ вкладышей достаточно большой, то, вероятнее всего, давление масла резко понизится. В таком случае экс-плу-а-ти-ро-вать мотор не рекомендуется.

Падение мощности мотора возникает при износе цилиндров и поршней, износе или залегании в канавах поршневых колец, некачественной затяжке головки цилиндров. Подобные неисправности способствуют падению компрессии в цилиндре. Чтобы проверить компрессию, существует специальный прибор – компрессометр, измерения необходимо выполнять на теплом моторе. Для этого необходимо выкрутить все свечи, после чего установить наконечник компрессометра на место одной из них. При абсолютно открытом дросселе проворачивают мотор стартером в течение трех секунд. Подобным методом последовательно выполняют проверку всех остальных цилиндров. Значение компрессии должно быть в рамках, указанных в технических характеристиках мотора. Разница компрессии между цилиндрами не должна быть не выше 1 кг/см2.

Увеличенное потребление масла , перерасход топлива, образование дыма в отработанных газах обычно происходит при износе цилиндров и колец или при залегании поршневых колец. Вопрос с залеганием кольца можно решить без разборки мотора, залив в цилиндр через специальные отверстия для свечи соответствующую жидкость.

Отложение нагара на камерах сгорания и днищах поршней уменьшает теп-ло-про-вод-ность, что способствует перегреву мотора, повышению топливного расхода и падению мощности.

Трещины на стенках рубашки охлаждения блока, а также головки блока цилиндров могут образоваться в связи с замерзанием охлаждающей жидкости, в результате перегрева мотора, в результате заполнения охлаждающей системы (см. система охлаждения двигателя) горячего мотора холодной охлаждающей жидкостью. Трещины на блоке цилиндров могут пропускать охлаждающую жидкость в цилиндры. В связи с этим выхлопные газы приобретают белый цвет.

Выше рассмотрены основные неисправности КШМ.


Крепежные работы


Чтобы предотвратить пропуск охлаждающей жидкости и газов через прокладку головки цилиндров, следует периодически контролировать крепление головки ключом со специальной динамометрической рукояткой с определенной последовательностью и усилием. Положение затяжки и последовательность затягивания гаек обозначают ав-то-мо-биль-ные заводы.

Головку цилиндров из чугуна прикрепляют, когда мотор находится в нагретом положении, алюминиевую голову, наоборот, на холодный двигатель. Необходимость затягивания крепления алюминиевых головок в холодном состоянии объясняется разным коэффициентом линейного расширения материала шпилек и болтов и материала головки. В связи с этим подтягивание гаек на сильно разогретом моторе не обеспечивает после остывания мотора должной плотности прилегания к блоку головки цилиндров.

Затяжку болтов прикрепления поддона картера для предотвращения деформации картера, нарушения при герметичности также проверяют с соблюдением пос-ле-до-ва-тель-нос-ти, то есть поочередным затягиванием диаметрально противоположных болтов.


Проверка состояния кривошипно-шатунного механизма


Техническое состояние кривошипно-шатунных механизмов определяется:

  • По компрессии (изменению давления) в цилиндрах мотора в конце хода сжатия;
  • По расходу масла в процессе эксплуатации и уменьшению давления в системе смазки двигателя ;
  • По разрежению в трубопроводе впуска;
  • По утечке газов из цилиндров;
  • По объему газов, проникающих в картер мотора;
  • По наличию стуков в моторе.

Расход масла в малоизношенном моторе незначителен и может равняться 0,1-0,25 литра на 100 км пути. При общем значительном износе мотора расход масла может составлять 1 литр на 100 км и больше, что, как правило, сопровождается обильным дымом.

Давление в масляной системе мотора должно соответствовать пределам, ус-та-нов-лен-ным для данного типа мотора и используемого сорта масла. Уменьшение давления масла на незначительных оборотах коленвала прогретого силового агрегата указывает на неисправность в смазочной системе или на присутствие недопустимых износов под-шип-ни-ков мотора. Падение масляного давления по манометру до 0 говорит о не-исп-рав-нос-ти редукционного клапана или манометра.

Компрессия является показателем герметичности цилиндров мотора и ха-рак-те-ри-зу-ет состояние клапанов, цилиндров и поршней. Герметичность цилиндров можно установить с помощью компрессометра. Изменение давления (компрессию) проверяют после пред-ва-ри-тель-но-го разогрева мотора до 80°C при выкрученных свечах. Установив наконечник компрессометра в отверстия для свечей, проворачивают стартером коленвал мотора на 10 – 14 оборотов и фиксируют показания компрессометра. Проверка выполняется по 3 раза для каждого цилиндра. Если показания компрессии на 30 – 40% ниже установленной нормы, это говорит о неисправностях (пригорание поршневых колец или их поломка, повреждение прокладки головки цилиндров или негерметичность клапанов).

Разрежение в трубопроводе впуска мотора измеряют вакуумметром. Значение разрежения у работающего на установившемся режиме моторов может меняться от изношенности цилиндро–поршневой группы, а также от состояния элементов га-зо-расп-ре-де-ле-ния (см. газораспределительный механизм), регулировки карбюратора (см. устройство карбюратора) и установки зажигания. Таким образом, такой метод проверки является об-щим и не дает возможности выделить конкретную неисправность по одному показателю.

Объем газов, проникающих в картер мотора , изменяется из–за неплотности сопряжений цилиндр + поршень + поршневое кольцо, увеличивающейся по степени изнашивания данных деталей. Количество проникающих газов измеряют при полной нагрузке мотора.

Обслуживание КШМ заключается в постоянном контроле креплений и подтягивании ослабевших гаек и болтов картера, а также головки блока цилиндров. Болты крепления головки блока и гайки шпилек следует подтягивать на разогретом моторе в определенной последовательности.

Двигатель следует содержать в чистоте, каждый день протирать или промывать кисточкой, смоченной в керосине, после этого протирать сухой ветошью. Необходимо помнить, что грязь, пропитанная маслом и бензином, представляет серьезную опасность для возгорания при наличии каких–либо неисправностей в системе зажигания двигателя и системе питания двигателя , также способствует образованию коррозии.



Периодически нужно снимать головку блока цилиндров и удалять весь нагар, об-ра-зо-вав-ший-ся в камерах сгорания.

Нагар плохо проводит тепло. При определенной величине слоя нагара на клапанах и поршнях отвод тепла в охлаждающую жидкость резко ухудшается, происходит перегрев мотора и уменьшение его мощностных показателей. В связи с этим, возникает потребность в более частом включении низких передач и потребность в топливе возрастает. Интенсивность формирования нагара полностью зависит от вида и качества используемого для мотора масла и топлива. Самое интенсивное нагарообразование выполняется при использовании низкооктанового бензина с достаточно высокой температурой конца выкипания. Стуки, возникающие в таком случае при работе двигателя, имеют детонационный характер и в конечном итоге приводят к уменьшению срока работоспособности двигателя.

Нагар необходимо удалять с камер сгорания, со стержней и головок клапанов, из впускных каналов блока цилиндров, с днищ поршней. Нагар рекомендуется удалять с по-мощью проволочных щеток или металлических скребков. Предварительно нагар раз-мяг-ча-ет-ся керосином.

При последующей сборке мотора прокладку головки блока необходимо ус-та-нав-ли-вать таким образом, чтобы сторона прокладки, на которой наблюдается сплошная окантовка перемычек между краешками отверстий для камер сгорания, была направлена в сторону головки блока.

Стоит учесть, что во время движения машины за городом в течении 60–ти минут со скоростью 65–80 км/ч происходит выжигание (очистка) цилиндров от нагара.

При должном регулярном обслуживании КШМ его срок службы продлится на долгие годы.

Назначение и характеристика


Кривошипно-шатунным называется механизм, осуществляющий рабочий процесс двигателя.

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала.

Кривошипно-шатунный механизм определяет тип двигателя по расположению цилиндров.

В двигателях автомобилей применяются различные кривошипно-шатунные механизмы

(рисунок 1): однорядные кривошипно-шатунные механизмы с вертикальным перемещением поршней и с перемещением поршней под углом применяются в рядных двигателях; двухрядные кривошипно-шатунные механизмы с перемещением поршней под углом применяются в V-образных двигателях; одно- и двухрядные кривошипно-шатунные механизмы с горизонтальным перемещением поршней находят применение в тех случаях, когда ограничены габаритные размеры двигателя по высоте.

Рисунок 1 – Типы кривошипно-шатунных механизмов, классифицированных по различным признакам.

Конструкция кривошипно-шатунного механизма.

В кривошипно-шатунный механизм входят блок цилиндров с картером и головкой цилиндров, шатунно-поршневая группа и коленчатый вал с маховиком.

Блок цилиндров 11 (рисунок 2) с картером 10 и головка 8 цилиндров являются неподвижными частями кривошипно-шатунного механизма.

К подвижным частям механизма относятся коленчатый вал 34 с маховиком 43 и детали шатунно-поршневой группы – поршни 24, поршневые кольца 18 и 19, поршневые пальцы 26 и шатуны 27.



Рисунок 2 – Кривошипно-шатунный механизм двигателей легковых автомобилей

1, 6 – крышки; 2 – опора; 3, 9 – полости; 4, 5 – прокладки; 7 – горловина; 8, 22, 28, 30 – головки; 10 – картер; 11 – блок цилиндров; 12 – 16, 20 – приливы; 17, 33 – отверстия; 18, 19 – кольца; 21 – канавки; 23 – днище; 24 – поршень; 25 – юбка; 26 – палец; 27 – шатун; 29 – стержень; 31, 42 – болты; 32, 44 – вкладыши; 34 – коленчатый вал; 35, 40 – концы коленчатого вала; 36, 38 – шейки; 37 – щека; 39 – противовес; 41 – шайба; 43 – маховик; 45 – полукольцо

Блок цилиндров вместе с картером является остовом двигателя. На нем и внутри него размещаются механизмы и устройства двигателя. В блоке 11, выполненном заодно с картером 10 из специального низколегированного чугуна, изготовлены цилиндры двигателя. Внутренние поверхности цилиндров отшлифованы и называются зеркалом цилиндров. Внутри блока между стенками цилиндров и его наружными стенками имеется специальная полость 9, называемая рубашкой охлаждения. В ней циркулирует охлаждающая жидкость системы охлаждения двигателя.

Внутри блока также имеются каналы и масляная магистраль смазочной системы, по которой подводится масло к трущимся деталям двигателя. В нижней части блока цилиндров (в картере) находятся опоры 2 для коренных подшипников коленчатого вала, которые имеют съемные крышки 1, прикрепляемые к блоку самоконтрящимися болтами. В передней части блока расположена полость 3 для цепного привода газораспределительного механизма. Эта полость закрывается крышкой, отлитой из алюминиевого сплава. В левой части блока цилиндров находятся отверстия 17 для подшипников вала привода масляного насоса, в которые запрессованы свертные сталеалюминиевые втулки. С правой стороны блока в передней его части имеются фланец для установки насоса охлаждающей жидкости и кронштейн для крепления генератора. На блоке цилиндров имеются специальные приливы для: 12 – крепления кронштейнов подвески двигателя; 13 – маслоотделителя системы вентиляции картера двигателя; 14 – топливного насоса; 15 – масляного фильтра; 16 – распределителя зажигания. Снизу блок цилиндров закрывается масляным поддоном, а к заднему его торцу прикрепляется картер сцепления. Для повышения жесткости нижняя плоскость блока цилиндров несколько опущена относительно оси коленчатого вала.

В отличие от блока, отлитого совместно с цилиндрами, на рисунке 3 представлен блок 4 цилиндров с картером 5, отлитые из алюминиевого сплава отдельно от цилиндров. Цилиндрами являются легкосъемные чугунные гильзы 2, устанавливаемые в гнезда 6 блока с уплотнительными кольцами 1 и закрытые сверху головкой блока с уплотнительной прокладкой.

Рисунок 3 – Блок двигателя со съемными гильзами цилиндров

1 – кольцо; 2 – гильза; 3 – полость; 4 – блок; 5 – картер; 6 – гнездо

Внутренняя поверхность гильз обработана шлифованием. Для уменьшения изнашивания в верхней части гильз установлены вставки из специального чугуна.

Съемные гильзы цилиндров повышают долговечность двигателя, упрощают его сборку, эксплуатацию и ремонт.

Между наружной поверхностью гильз цилиндров и внутренними стенками блока находится полость 3, которая является рубашкой охлаждения двигателя. В ней циркулирует охлаждающая жидкость, омывающая гильзы цилиндров, которые называются мокрыми из-за соприкосновения с жидкостью.

Головка блока цилиндров закрывает цилиндры сверху и служит для размещения в ней камер сгорания, клапанного механизма и каналов для подвода горючей смеси и отвода отработавших газов. Головка 8 блока цилиндров (см. рисунок 2) выполнена общей для всех цилиндров, отлита из алюминиевого сплава и имеет камеры сгорания клиновидной формы. В ней имеются рубашка охлаждения и резьбовые отверстия для свечей зажигания. В головку запрессованы седла и направляющие втулки клапанов, изготовленные из чугуна. Головка крепится к блоку цилиндров болтами. Между головкой и блоком цилиндров установлена металлоасбестовая прокладка 4, обеспечивающая герметичность их соединения. Сверху к головке блока цилиндров шпильками крепится корпус подшипников с распределительным валом, и она закрывается стальной штампованной крышкой 6 с горловиной 7 для заливки масла в двигатель. Для устранения течи масла между крышкой и головкой блока цилиндров установлена уплотняющая прокладка 5. С правой стороны к головке блока цилиндров крепятся шпильками через металлоасбестовую прокладку впускной и выпускной трубопроводы, отлитые соответственно из алюминиевого сплава и чугуна.

Поршень служит для восприятия давления газов при рабочем ходе и осуществления вспомогательных тактов (впуска, сжатия, выпуска). Поршень 24 представляет собой полый цилиндр, отлитый из алюминиевого сплава. Он имеет днище 23, головку 22 и юбку 25. Снизу днище поршня усилено ребрами. В головке поршня выполнены канавки 21 для поршневых колец.

В юбке поршня находятся приливы 20 (бобышки) с отверстиями для поршневого пальца. В бобышках поршня залиты стальные термокомпенсационные пластины, уменьшающие расширение поршня от нагрева и исключающие его заклинивание в цилиндре двигателя. Юбка сделана овальной в поперечном сечении, конусной по высоте и с вырезами в нижней части. Овальность и конусность юбки так же, как и термокомпенсационные пластины, исключают заклинивание поршня, а вырезы – касание поршня с противовесами коленчатого вала. Кроме того, вырезы в юбке уменьшают массу поршня. Для лучшей приработки к цилиндру наружная поверхность юбки поршня покрыта тонким слоем олова. Отверстие в бобышках под поршневой палец смещено относительно диаметральной плоскости поршня. Посредством этого уменьшаются перекашивание и удары при переходе его через верхнюю мертвую точку (ВМТ ).

Поршни двигателей легковых автомобилей могут иметь днища различной конфигурации с целью образования вместе с внутренней поверхностью головки цилиндров камер сгорания необходимой формы. Днища поршней могут быть плоскими, выпуклыми, вогнутыми и с фигурными выемками.

Поршневые кольца уплотняют полость цилиндра, исключают прорыв газов в картер двигателя (компрессионные 19) и попадание масла в камеру сгорания (маслосъемное 18). Кроме того, они отводят теплоту от головки поршня к стенкам цилиндра. Компрессионные и маслосъемные кольца – разрезные. Они изготовлены из специального чугуна. Вследствие упругости кольца плотно прилегают к стенкам цилиндра. При этом между разрезанными концами колец (в замках) сохраняется небольшой зазор (0,2…0,35 мм).

Верхнее компрессионное кольцо, работающее в наиболее тяжелых условиях, имеет бочкообразное сечение для улучшения его приработки. Наружная поверхность его хромирована для повышения износостойкости.

Нижнее компрессионное кольцо имеет сечение скребкового типа (на его наружной поверхности выполнена проточка) и фосфатировано. Кроме основной функции, оно выполняет также дополнительную – маслосбрасывающего кольца.

Маслосъемное кольцо на наружной поверхности имеет проточку и щелевые прорези для отвода во внутреннюю полость поршня масла, снимаемого со стенок цилиндра. На внутренней поверхности оно имеет канавку, в которой устанавливается разжимная витая пружина, обеспечивающая дополнительное прижатие кольца к стенкам цилиндра двигателя.

Поршневой палец служит для шарнирного соединения поршня с верхней головкой шатуна. Палец 26 – трубчатый, стальной. Для повышения твердости и износостойкости его наружная поверхность подвергается цементации и закаливается токами высокой частоты. Палец запрессовывается в верхнюю головку шатуна с натягом, что исключает его осевое перемещение в поршне, в результате которого могут быть повреждены стенки цилиндра. Поршневой палец свободно вращается в бобышках поршня.

Шатун служит для соединения поршня с коленчатым валом и передачи усилий между ними. Шатун 27 – стальной, кованый, состоит из неразъемной верхней головки 28, стержня 29 двутаврового сечения и разъемной нижней головки 30. Нижней головкой шатун соединяется с коленчатым валом. Съемная половина нижней головки является крышкой шатуна и прикреплена к нему двумя болтами 31. В нижнюю головку шатуна вставляют тонкостенные биметаллические, сталеалюминиевые вкладыши 32 шатунного подшипника. В нижней головке шатуна имеется специальное отверстие 33 для смазывания стенок цилиндра.

Коленчатый вал воспринимает усилия от шатунов и передает создаваемый на нем крутящий момент трансмиссии автомобиля. От него также приводятся в действие различные механизмы двигателя (газораспределительный механизм, масляный насос, распределитель зажигания, насос охлаждающей жидкости и др.).

Коленчатый вал 34 – пятиопорный, отлит из специального высокопрочного чугуна. Он состоит из коренных 35 и шатунных 38 шеек, щек 37, противовесов 39, переднего 35 и заднего 40 концов. Коренными шейками коленчатый вал установлен в подшипниках (коренных опорах) картера двигателя, вкладыши 44 которых тонкостенные, биметаллические, сталеалюминиевые.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Шатунные подшипники смазываются по каналам, соединяющим коренные шейки с шатунными. Щеки соединяют коренные и шатунные шейки коленчатого вала, а противовесы разгружают коренные подшипники от центробежных сил неуравновешенных масс.

На переднем конце коленчатого вала крепятся: ведущая звездочка цепного привода газораспределительного механизма; шкив ременной передачи для привода вентилятора, насоса охлаждающей жидкости, генератора; храповик для поворачивания вала вручную пусковой рукояткой. В заднем конце коленчатого вала имеется специальное гнездо для установки подшипника первичного (ведущего) вала коробки передач. К торцу заднего конца вала с помощью специальной шайбы 41 болтами 42 крепится маховик 43.

От осевых перемещений коленчатый вал фиксируется двумя опорными полукольцами 45, которые установлены в блоке цилиндров двигателя по обе стороны заднего коренного подшипника. Причем с передней стороны подшипника ставится сталеалюминиевое кольцо, а с задней – из спеченных материалов (металлокерамическое).

Маховик обеспечивает равномерное вращение коленчатого вала, накапливает энергию при рабочем ходе для вращения вала при подготовительных тактах и выводит детали кривошипно-шатунного механизма из мертвых точек. Энергия, накопленная маховиком, облегчает пуск двигателя и обеспечивает трогание автомобиля с места. Маховик 43 представляет собой массивный диск, отлитый из чугуна. На обод маховика напрессован стальной зубчатый венец, предназначенный для пуска двигателя электрическим стартером. К маховику крепятся детали сцепления. Маховик, будучи деталью кривошипно-шатунного механизма, является также одной из ведущих частей сцепления.

Неисправности и техническое обслуживание КШМ и ГРМ

Техническое обслуживание двигателя состоит из проверки его технического состояния внешним осмотром и в процессе работы, выявления неисправностей, выполнения контрольно-регулировочных, смазочных и крепежных работ по кривошипно-шатунному и распределительному механизмам, системам охлаждения, смазки, питания и зажигания.

Неисправности кривошипно-шатунного механизма обусловливаются естественным изнашиванием сопряженных деталей.

Основными признаками неисправности кривошипно-шатунного механизма являются:

  • уменьшение компрессии в цилиндрах;
  • появление шумов и стуков;
  • прорыв газов в картер и появление из маслоналивной горловины голубоватого дыма с резким запахом;
  • увеличение расхода масла;
  • разжижение масла в картере (из-за проникновения туда паров рабочей смеси при тактах сжатия);
  • забрасывание свечей зажигания маслом, отчего на электродах образуется нагар и ухудшается искрообразование. В итоге повышается расход топлива и снижается мощность двигателя.

Неисправности газораспределительного механизма наиболее часто проявляются в нарушении зазоров между стержнями клапанов и толкателями. Это приводит к нарушению фаз газораспределения, ухудшению наполнения цилиндров (вследствие запаздывания открытия впускного или выпускного клапанов при увеличенных зазорах).

Увеличенные зазоры между стержнями клапанов и толкателями вызывают стуки и преждевременный износ деталей распределительного механизма. Малые зазоры или их отсутствие приводят к неплотной посадке клапанов и пропуску рабочей смеси во впускной и выпускной трубопроводы. В результате уменьшается компрессия в цилиндрах двигателя и его мощность. Признаками этих неисправностей служат появление вспышек в карбюраторе и хлопков в глушителе.

Техническое обслуживание кривошипно-шатунного (КШМ) и газораспределительного механизмов (ГРМ)

Основные работы:

  • проверка стабильности состояния и подтягивание креплений (крепежные работы) опоры двигателя к раме, головки цилиндров и поддона картера к блоку, фланцев впускного и выпускного трубопроводов и других соединений;
  • проверка технического состояния или работоспособности (контрольные работы) кривошипно-шатунного и распределительного механизмов;
  • регулировочные работы и смазка.

Крепежные работы

Для предотвращения пропуска газов и охлаждающей жидкости через прокладку головки цилиндров необходимо периодически проверять крепление головки ключом с динамометрической рукояткой с определенным усилием и последовательностью. Момент затяжки и последовательность подтягивания гаек устанавливают автомобильные заводы.

Чугунную головку цилиндров крепят, когда двигатель находится в нагретом состоянии, а головку из алюминиевого сплава – в холодном.

Необходимость подтягивания крепления головок из алюминиевого сплава в холодном состоянии объясняется неодинаковым коэффициентом линейного расширения материала болтов и шпилек (сталь) и материала головки (алюминиевый сплав). Поэтому подтягивание гаек на горячем двигателе не обеспечивает после его остывания необходимой плотности прилегания головки цилиндров к блоку.

Затяжку болтов крепления поддона картера во избежание деформации картера, нарушения герметичности проверяют также с соблюдением последовательности, т.е. поочередным подтягиванием диаметрально противоположных болтов.

Контроль состояния КШМ и ГРМ

Техническое состояние этих механизмов можно определять:

  • по расходу (угару) масла в эксплуатации и падению давления в системе смазки;
  • по изменению давления (компрессии) в цилиндрах двигателя в конце хода сжатия;
  • по разрежению во впускном трубопроводе;
  • по количеству газов, прорывающихся в картер двигателя;
  • по утечке газов (воздуха) из цилиндров;
  • наличию стуков в двигателе.

Угар масла в малоизношенном двигателе незначителен и может составлять 0,1-0,25 л/100 км пробега. При значительном общем износе двигателя угар может достигать 1л/100 км и более, что обычно сопровождается сильным дымлением.

Давление в масляной системе двигателя должно быть в пределах, установленных для данного типа двигателя и применяемого сорта масла. Снижение давления масла на малых оборотах коленчатого вала прогретого двигателя указывает на наличие недопустимых износов подшипников двигателя или неисправности в системе смазки.

Падение давления масла по манометру до 0 указывает на неисправность манометра или редукционного клапана.

Повышенное давление в системе смазки может возникнуть в результате большой вязкости или засорения масляной магистрали.

Компрессия служит показателем герметичности цилиндров двигателя и характеризует состояние цилиндров, поршней и клапанов. Герметичность цилиндров может быть определена компрессометром .

Компрессию проверяют после предварительного прогрева двигателя до 70-80 ºС при вывернутых свечах. Установив резиновый наконечник компрессометра в отверстие свечи, провертывают стартером коленчатый вал двигателя на 10-12 оборотов и записывают показания компрессометра. Проверку повторяют 2-3 раза для каждого цилиндра.

Если величина компрессии на 30-40 % ниже нормы, это указывает на наличие неисправностей (поломку или пригорание поршневых колец, негерметичность клапанов или повреждение прокладки головки цилиндров).

Разрежение во впускном трубопроводе двигателя замеряют вакуумметром. Величина разрежения у работающего на установившемся режиме двигателей может изменяться не только от изношенности цилиндро-поршневой группы, но и от состояния деталей газораспределения, установки зажигания и регулировки карбюратора.

Таким образом, данный метод контроля является общим и не позволяет выделить ту или иную неисправность по одному показателю. Вперёд

1.Назначение, устройство, принцип работы

Назначение

Кривошипно-шатунный механизм служит для преобразования поступательного движения поршня под действием энергии расширения продуктов сгорания топлива во вращательное движение коленчатого вала. Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, который затем через маховик передается агрегатам трансмиссии.

Устройство

Механизм состоит из поршня с поршневыми кольцами и пальцем, шатуна, коленчатого вала и маховика.

Головка цилиндров - общая для всех четырех цилиндров - из алюминиевого сплава. Центрируется на блоке двумя втулками и крепится десятью винтами. Между блоком и головкой (их поверхности должны быть сухими) устанавливается безусадочная металлоармированная прокладка, (ее повторное использование не допускается).

Цилиндры расточены непосредственно в блоке. Номинальный диаметр 82 мм при ремонте может быть увеличен на 0,4 или 0,8 мм. Класс цилиндра маркируется на нижней плоскости блока латинскими буквами в соответствии с диаметром цилиндра в мм: А - 82,00-82,01, В - 82,01-82,02, С - 82,02-82,03, D - 82,03-82,04, Е - 82,04-82,05. Максимально допустимый износ цилиндра составляет 0,15 мм на диаметр.

В нижней части блока цилиндров имеется пять опор коренных подшипников со съемными крышками, которые крепятся к блоку специальными болтами. Крышки невзаимозаменяемы (отверстия под подшипники обрабатываются в сборе с крышками) и маркированы для отличия рисками на наружной поверхности В средней опоре имеются гнезда для упорных полуколец 12, препятствующих осевому перемещению коленчатого вала. Спереди (со стороны шкива коленчатого вала) ставится сталеалюминевое полукольцо, сзади - металлокерамическое. Кольца изготовляются с номинальной и увеличенной на 0,127 мм толщиной. При превышении осевого зазора коленчатого вала 0,35 мм меняются одно или оба полукольца (номинальный зазор - 0,06-0,26 мм).

Вкладыши коренных 13 и шатунных подшипников 11 - тонкостенные сталеалюминевые. Верхние коренные вкладыши первой, второй, четвертой и пятой опор, устанавливаемые в блоке цилиндров, снабжены канавкой на внутренней поверхности. У нижних коренных вкладышей, верхнего вкладыша третьей опоры и шатунных вкладышей канавки отсутствуют. Ремонтные вкладыши выпускаются под шейки коленчатого вала, уменьшенные на 0,25, 0,50, 0,75 и 1,00 мм.

Коленчатый вал 25 изготовлен из высокопрочного чугуна. Он имеет пять коренных и четыре шатунных шейки и снабжен восемью противовесами, отлитыми заодно с валом. Коленчатый вал двигателя 2112 отличается от коленчатого вала двигателей 2110 и 2111 формой противовесов и повышенной прочностью. Поэтому не допускается установка коленчатого вала от двигателей 2110 и 2111 в двигатель 2112. Для подачи масла от коренных шеек к шатунным в коленчатом вале просверлены каналы 14, выходные отверстия которых закрыты запрессованными заглушками 26.

На переднем конце коленчатого вала на сегментной шпонке установлен зубчатый шкивпривода распределительного вала 28, к нему крепится шкив привода генератора 29, который также является демпфером крутильных колебаний коленчатого вала. На зубчатом венце шкива два зуба из 60 отсутствуют - впадины служат для работы датчика положения коленчатого вала.

К заднему концу коленчатого вала шестью самоконтрящимися болтами через общую шайбу 21 крепится маховик 24, отлитый из чугуна, с напрессованным стальным зубчатым венцом 23, служащим для пуска двигателя стартером. Конусообразная лунка около венца маховика должна находиться напротив шатунной шейки четвертого цилиндра (это необходимо для определения ВМТ после сборки двигателя).

Шатун 3 является стальным, обрабатывается вместе с крышкой 1, и поэтому они в отдельности невзаимозаменяемы. Чтобы при сборке не перепутать крышки и шатуны, на них клеймится номер цилиндра, в который они устанавливаются. При сборке цифры на шатуне и крышке должны находиться с одной стороны.

Поршень 4 отливается из высокопрочного алюминиевого сплава. Поскольку алюминий имеет высокий температурный коэффициент линейного расширения, то для исключения опасности заклинивания поршня в цилиндре в головке поршня над отверстием для поршневого пальца залита терморегулирующая стальная пластина 5.

В верхней части поршня проточены три канавки под поршневые кольца. Канавка маслосъемного кольца имеет выходящие в бобышки сверления, по которым масло, собранное кольцом со стенок цилиндра, поступает к поршневому пальцу от. Ось отверстия под поршневой палец смещена на 1,2 мм от диаметральной плоскости поршня в сторону расположения клапанов двигателя. Благодаря этому поршень всегда прижат к одной стенке цилиндра, и устраняются стуки поршня о стенки цилиндра при переходе его через ВМТ. Однако, это требует установки поршня в цилиндр в строго определенном положении. При установке поршня необходимо ориентироваться по стрелке, выбитой на днище (она должна быть направлена в сторону шкива коленчатого вала). У поршней двигателя 2112 днище плоское, с четырьмя углублениями под клапаны (у поршней двигателей 2110 и 2111 днище имеет овальную выемку).

Измерять диаметр поршня для определения его класса можно только в одном месте: в плоскости, перпендикулярной поршневому пальцу на расстоянии 51,5 мм от днища поршня. В остальных местах диаметр поршня отличается от номинального, т.к. наружная поверхность поршня имеет сложную форму. В поперечном сечении она овальная, а по высоте коническая. Такая форма позволяет компенсировать неравномерное расширение поршня из-за неравномерного распределения массы металла внутри поршня.

Поршни по наружному диаметрукак и цилиндры, подразделяются на пять классов (маркировка - на днищe). Диаметр поршня (для номинального размера, мм): А - 81,965-81,975; B - 81,975-81,985; С - 81,985-81,995; D - 81,995-82,005; Е - 82,005-82,015. В продажу поступают поршни классов A, С и E (номинального и ремонтных размеров): расчетный зазор между ними - 0,025-0,045 мм, а максимально допустимый зазор при износе - 0,15 мм. Не рекомендуется устанавливать новый поршень в изношенный цилиндр без его расточки: проточка под верхнее поршневое кольцо в новом поршне может оказаться чуть выше, чем в старом, и кольцо может сломаться о "ступеньку", образующуюся в верхней части цилиндра при его износе. У поршней ремонтных размеров на днище выбивается треугольник (+ 0,4 мм) или квадрат (+ 0,8 мм).

По массе поршни сортируются на три группы: нормальную, увеличенную на 5 г и уменьшенную на 5 г. Этим группам соответствует маркировка на днище поршня: Г, + и -.

Поршни одного двигателя подбирают по массе (разброс не должен превышать 5 г) - это делается для уменьшения дисбаланса кривошипно-шатунного механизма.

Поршневой палец 10 стальной, трубчатого сечения, запрессован в верхнюю головку шатуна и свободно вращается в бобышках поршня. От выпадения онзафиксирован двумя стопорными пружинными кольцами, которые располагаютсяпроточках бобышек поршня. По наружному диаметру пальцы сортируются на три категории через 0,004 мм соответственно категориям поршней. Торцы пальцев окрашиваются в соответствующий цвет: синий -первая категория, зеленый — вторая и красный — третья. Поршневые кольца обеспечивают необходимое уплотнение цилиндра и отводят тепло от поршня к его стенкам. Кольца прижимаются к стенкам цилиндра под действием собственной упругости и давления газов. На поршне устанавливаются три чугунных кольца — два компрессионных 7, 8 (уплотняющих) и одно (нижнее) маслосъемное 6, которое препятствует попаданию масла в камеру сгорания.

Верхнее компрессионное кольцо 8 работает в условиях высокой температуры, агрессивного воздействия продуктов сгорания и недостаточной смазки, поэтому для повышения износоустойчивости наружная поверхность хромирована и для улучшения прирабатываемости имеет бочкообразную форму образующей.

Нижнее компрессионное кольцо 7 имеет снизу проточку для собирания масла при ходе поршня вниз, выполняя при этом дополнительную функцию маслосбрасывающего кольца. Поверхность кольца для повышения износоустойчивости и уменьшения трения о стенки цилиндра фосфатируется.

Маслосъемное кольцо имеет хромированные рабочие кромки и проточку на наружной поверхности, в которую собирается масло, снимаемое со стенок цилиндра. Внутри кольца устанавливается стальная витая пружина, которая разжимает кольцо изнутри и прижимает его к стенкам цилиндра. Кольца ремонтных размеров изготавливаются (так же, как и поршни) с увеличенным на 0,4 и 0,8 мм наружным диаметром.

Смазка двигателя - комбинированная. Под давлением смазываются коренные и шатунные подшипники, пары "опора - шейка распредвала, гидротолкатели. Разбрызгиванием масло подается на стенки цилиндров (далее к поршневым кольцам и пальцам), на днище поршней, к паре "кулачок распределительного вала толкатель и стержням клапанов. Остальные узлы смазываются самотеком.

Принцип работы

Если в цилиндр ввести заряд горючей смеси, необходимый для поддержания горения, а затем его зажечь электрической искрой, выделится большое количество тепла и давление в цилиндре повысится. Давление расширяющихся газов передастся во все стороны, в том числе и на поршень, заставляя его перемещаться. Так как поршень шарнирно соединен с верхней головкой шатуна при помощи пальца, а нижняя головка шатуна подвижно закреплена на шейке коленчатого вала, то при перемещении поршня вместе с шатуном вращается коленчатый вал и закрепленный на его конце маховик. При этом прямолинейное движение поршня при помощи шатуна и коленчатого вала преобразуется во вращательное движение маховика.

Первый такт - впуск - поршень перемещается от верхней мертвой точки (в.м.т.) к нижней мертвой точки (м.н.т.), клапан впускного отверстия открыт, а выпускного - закрыт. В цилиндре создается разряжение, и горючая смесь заполняет его. Следовательно, такт впуска служит для наполнения цилиндра свежим зарядом горючей смеси.

Второй такт - сжатие - поршень перемещается от н.м.т. к в.м.т., оба отверстия закрыты клапанами. Объем рабочей смеси уменьшается в 6,5-7,0 раз, температура повышается до 300-400°C, в результате чего давление в цилиндре повышается до 10-12 кГ/см2. Такт сжатие служит для лучшего перемешивания рабочей смеси и подготовки ее к воспламенению.

Третий такт - сгорание и расширение газов. В конце такта сжатия между электродами свечи возникает электрическая искра, которая воспламеняет рабочую смесь. Выделено при сгорании рабочей смеси тепло нагревает газы до температуры 2200-2500°C; при этом газы расширяются и создают давление в 35-40 кГ/см2, под действием которого поршень перемещается вниз от в.м.т. к н.м.т. Оба отверстия закрыты клапанами. Движение поршня при этом также называют рабочим ходом. При рабочем ходе действующее на поршень давление газов через поршневой палец и шатун передается на кривошип, создавая на коленчатом валу крутящий момент. Рабочий ход поршня служит для преобразования тепловой энергии сгорания топлива в механическую работу.

Четвертый такт - выпуск - поршень перемещается вверх от н.м.т. к в.м.т. Впускное отверстие закрыто. Отработавшие газы выпускаются из цилиндра в атмосферу. Назначение такта выпуска - очистить цилиндр от отработавших газов.

При работе двигателя процессы, происходящие в цилиндре, беспрерывно повторяются в указанном порядке.

Рабочим циклом двигателя называется совокупность процессов, происходящих в цилиндре в определенной последовательности - впуск, сжатие, рабочий ход и выпуск.

Поршень, перемещаясь в цилиндре, достигает то верхнего, то нижнего крайних положений. Крайние положения, в которых поршень меняет направление движения, соответственно называются верхней и нижней мертвыми точками

Расстояние, которое приходит поршень между мертвыми точками, называется ходом поршня. За каждый ход поршня коленчатый вал повернется на Ѕ оборота, или на 180°. Процесс, происходящий внутри цилиндра за один ход поршня, называется тактом.

При перемещении поршня от верхней мертвой точки к нижней в цилиндре освобождается пространство, которое называется рабочим объемом цилиндра.

Когда поршень находится в верхней мертвой точке, над ним наименьшее пространство, называемое объемом камеры сгорания.

Рабочий объем цилиндра и объем камеры сгорания, вместе взятые, составляют полный объем цилиндра. В многоцилиндровых двигателях сумма рабочих объемов всех цилиндров выражается в литрах и называется литражом двигателя.

Одним из важных показателей двигателя является его степень сжатия, определяемая отношением полного объема цилиндра к объему камеры сгорания. С повышением степени сжатия двигателя повышается его экономичность и мощность.

2.Основные неисправности КШМ

Технически исправный двигатель должен развивать полную мощность, работать без перебоев на полных нагрузках и холостом ходу, не перегреваться, не дымить и не пропускатьмасло через уплотнения.

Основными признаками неисправности кривошипно-шатунного механизма являются:

1) уменьшение давления в конце такта сжатия (компрессии) в цилиндрах;

2) появление шумов и стуков при работе двигателя;

3) прорыв газов в картер, увеличение расхода масла;

4) разжижение масла в картере (из-за проникновения туда паров рабочей смеси при тактах сжатия);

5) поступление масла в камеру сгорания и попадание его на свечи зажигания, отчего на электродах образуется нагар и ухудшается искрообразование. В итоге снижается мощность двигателя, повышается расход топлива и содержание СО в выхлопных газах.

Снижение мощности двигателя

- может сопровождаться затрудненным пуском, неустойчивой работой на различных режимах, повышением расхода топлива, увеличением процента содержания СО и СН в отработанных газах.

Причины:

Снижение компрессии в цилиндрах:

Износ ЦПГ - приводит к увеличению зазора, что способствует прорыву газов из камеры сгорания, под воздействием различных факторов меняется геометрическая форма- появляется овальность, износ цилиндров на конус, так как в верхней их части самые неблагоприятные условия работы.

Износ, поломка и выпадение поршневых колец или залегание в поршневых канавках

происходит при несвоевременной замене загрязненного масла или при использовании сортов масла с большим содержанием лаков и смол, приводит к засорению канавок с последующим пригоранием колец, которые перестают пружинить и сдерживать прорывающиеся газы, а их острые кромки начинают “шабрить” зеркало цилиндров.

Ослабление крепления головки блока

приводит к прорыву как сжатой рабочей смеси, так и отработанных газов, что вызывает быстрое прогорание прокладки головки блока и может привести к короблению самой головки, особенно при перегреве двигателя.

Повышенный шум при работе

Причины:

Повышенный износ деталей

Неудовлетворительная смазка деталей

например, при пониженном уровне смазки в поддоне картера и чрезмерном разжижении её, при использованиималовязких сортов в жарких климатических условиях.

Механические повреждения и аварийные поломки

Причины:

Нарушение технологии сборки

Заводской дефект деталей или чрезмерный износ их в процессе эксплуатации

Нарушение нормальной работы двигателя - например, сильная детонация может привести к прогоранию поршней, обрыву шатунов, поломке коленчатого вала.

Проворачивание вкладышей подшипников - обычно приводит к заклиниванию двигателя.

3.Диагностирование КШМ

Стук и шумы в двигателе возникают в результате износа его основных деталей и появления между сопряженными деталями увеличенных зазоров. Стуки в двигателе прослушиваются при помощи стетоскопа, что требует определенного навыка.

Обычно при большом износе вкладышей происходит выплавление его антифрикционного слоя, что сопровождается резким падением давления масла. В этом случае двигатель должен быть немедленно остановлен, так как дальнейшая его работа может привести к поломке деталей.

Повышенный расход масла, перерасход топлива, появление дыма в отработавших газах (при нормальном уровне масла в картере) обычно появляются при залегании поршневых колец или износе колец цилиндров. Залегание кольца можно устранить без разборки двигателя, для чего в каждый цилиндр горячего двигателя следует залить на ночь через отверстие свечи зажигания по 20 г смеси равных частей денатурированного спирта и керосина. Утром двигатель следует пустить, дать поработать 10-15 мин, после чего заменить масло.

Прослушивание стетоскопом

Перед диагностированием двигатель следует прогретьдо температуры охлаждающей жидкости (90+-5) С. Прослушивание проводят, прикасаясь острием наконечника звукочувствительного стержня в зоне сопряжения проверяемого механизма.

Работу поршень-цилиндр прослушивают по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю - стуки сильного глухого тона, усиливающиеся с увеличением нагрузки, свидетельствует о возможном увеличении зазора между поршнем и цилиндром, об изгибе шатуна, поршневого пальца и т.д.

Сопряжение поршневое кольцо -канавка проверяют на уровнеНМТ хода поршня на средней частоте вращения КВ - слабый стук высокого тона свидетельствует об увеличенном зазоре между кольцами и канавками поршней, либо о чрезмерном износеили поломке колец.

Сопряжение поршневой палец - втулка верхней головкишатуна проверяют на уровне ВМТ при малой частоте вращения КВ с резким переходом на среднюю. Сильный стук высокого тона, похожий на частые удары молотком по наковальне, говорит о повышенном износе деталей сопряжения.

Работы сопряжения коленчатый вал - шатунный подшипник прослушивают на малой и средней частотах вращения КВ(ниже НМТ). Глухой звук среднего тона сопровождает износ шатунных вкладышей. Стук коренных подшипников КВ прослушивают в этих же зонах (чуть ниже) при резком изменении частоты вращения КВ: сильный глухой стук низкого тона свидетельствует об износе коренных подшипников.

Проверка компрессии

Компрессию в цилиндрах определяют компрессометром, представляющим собой корпус с вмонтированным в него манометром. Манометр соединен с одним концом трубки, на другом конце которой имеется золотник с резиновым наконечником, плотновставляемым в отверстие для свечи зажигания. Проворачивая коленчатый валдвигателя стартером или пусковой рукояткой, измеряют максимальное давление вцилиндре и сравнивают его с нормативными.

Для бензиновых двигателей номинальные значения компрессии составляют0,75...1,5 (7 - 15 кгс/cм2). Падение мощности двигателя возникает при износе или залегании в канавках поршневых колец, износе поршней и цилиндров, а также плохой затяжке головки цилиндров. Эти неисправности вызывают падение компрессии в цилиндре.

Расход сжатого воздуха, подаваемоговцилиндры

Для определения утечки сжатого воздуха из надпоршневого пространства применяют прибор К-69М . Воздух в цилиндры прогретого двигателя подают либо через редуктор 1 прибора, либо непосредственно из магистрали по шлангу 4 в цилиндр 7 через штуцер 6, ввернутый в отверстие для свечи или форсунки, к которому присоединяется шланг 3 при помощи быстросъемной муфты 5.

В первом случае проверяют утечку воздуха или падение давления из-за не плотностей в каждом цилиндре двигателя. Для этого рукояткой редуктора 1 прибор настраивают так, чтобы при полностью закрытом клапане муфты 5 стрелка манометра находилась против нулевого деления, что соответствует давлению 0,16 М Па, а при полностью открытом клапане и утечке воздуха в атмосферу - против деления 100%.

Относительную неплотность цилиндропоршневой группы проверяют при установке поршня проверяемого цилиндра в двух положениях: в начале и конце такта сжатия. Поршень от движения под давлением сжатого воздуха фиксируют, включая передачу в коробке передач автомобиля.

Такт сжатия определяется свистком-сигнализатором, вставляемым в отверстие свечи (форсунки).

Состояние поршневых колец и клапанов оценивают по показаниям манометра 2 при положении поршня в в.м.т., а состояние цилиндра (износ цилиндра по высоте) - по показаниям манометра при положении поршня в начале и конце такта сжатия и по разности этих показаний.

Полученные данные сравнивают со значениями, при которых дальнейшая эксплуатация двигателя недопустима. Предельно допустимые значения утечки воздуха для двигателей с различными диаметрами цилиндров указаны в инструкции прибора.

Чтобы определить место утечки (неисправность), воздух под давлением 0,45-06 МПа подают из магистрали по шлангу 4 в цилиндры двигателя.

Поршень при этом устанавливают в конце такта сжатия в верхней мертвой точке.

Место прорыва воздуха через неплотность определяют прослушиванием при помощи фонендоскопа.

Утечка воздуха через клапаны двигателя обнаруживается визуально по колебанию пушинок индикатора, вставляемого в отверстие свечи (форсунки) одного из соседних цилиндров, где открыты в данном положении клапаны.

Утечка воздуха через поршневые кольца определяется только прослушиванием при положении поршня в н.м.т. в зоне минимального износа цилиндров. Утечка через прокладку головки цилиндров обнаруживается по пузырькам в горловине радиатора или в плоскости разъема.

Суммарный зазор в верхней головке шатунаи шатунном подшипнике

Измерение суммарных зазоров в верхней головке шатуна и шатунном подшипнике является еще одним результативным методом проверки состояния кривошипно-шатунного механизма. Проверку осуществляют при неработающем двигателе при помощи устройства КИ-11140.

Наконечник 3 с трубкой устройства устанавливают на место снятой свечи зажигания или форсунки проверяемого цилиндра. К основанию 2 через штуцер присоединяют компрессорно-вакуумную установку. Поршень устанавливают за 0,5 - 1,0 мм от в.м.т. на такте сжатия, стопорят коленчатый вал от проворачивания и с помощью компрессорно-вакуумной установки попеременно создают в цилиндре давление 200 кПа и разряжение 60 кПа. При этом поршень, поднимаясь и опускаясь, выбирает зазоры, сумма которых фиксируется индикатором 1.

Номинальный расчетный зазор составляет 0,02-0,07 мм для шатунных.

Количество газов, прорывающихся в картер

Состояние сопряжения поршень—поршневые кольца—цилиндр можно оценить по количеству газов, прорывающихся в картер. Этот диагностический параметр измеряют расходомером КИ-4887-1

1—3 - манометры, 4входной патрубок, 5, 6 - краны, 7 эжектор

Предварительно прогреть двигатель до нормального режима. Прибор имеет трубу с входным 5 и выходным 6 дроссельными кранами. Входной патрубок 4 присоединяют к маслозаливной горловине двигателя, эжектор 7 для отсоса газов устанавливают внутри выхлопной трубы или присоединяют к вакуумной установке. В результате разрежения в эжекторе картерные газы поступают в расходомер. Устанавливая при помощи кранов 5 и б жидкость в столбиках манометров 2 и 3 на одном уровне, добиваются, чтобы давление в полости картера было равно атмосферному. Перепад давления АА устанавливают по манометру / одинаковым для всех замеров при помощи крана 5. По шкале прибора определяют количество газов, прорывающихся в картер, и сравнивают его с номинальным.

4.Техническое обслуживание

При ЕО двигатель очищают от грязи, проверяют его состояние визуально и прослушивают работу в разных режимах.

При Т0-1 проверяют крепление опор двигателя. Проверить герметичность соединения головки цилиндров, поддона картера, сальника коленчатого вала. При не плотном соединении головки с блоком, будут видны подтеки масла на стенках блока цилиндров. При неплотном соединении поддона картера и сальника КВ судят по подтекам масла.

При ТО-2 необходимо подтянуть гайки крепления головкицилиндров. Подтяжку головки из алюминиевого сплава производят на холодном двигателе динамометрическим ключом либо обычным без применения насадок. Усилие должно быть в пределах 7,5 - 7,8 кгс*м. Подтяжка должна производиться от центра, постепенно перемещаясь к краям и при этом должна идти крест на крест, без рывков (равномерно). Подтянуть крепление поддона картера.

СО 2 раза в годпроверитьсостояние ЦПГ.

5.Разборка, ремонт, сборка, диагностика

Разборка

Для выполнения работы потребуются: набор ключей, динамометрический ключ, смотровая яма или эстакада, регулируемый по высоте упор (например, винтовой домкрат), подъемное устройство (таль, тельфер или лебедка грузоподъемностью не менее 100 кг) или второй регулируемый упор. Работу лучше выполнять с помощником.

  1. Ослабив затяжку хомута, снимаем шланг вентиляции картера с патрубка блока цилиндров.

2. Ключом на 10 мм отворачиваем два болта крепления подводящей трубы к блоку цилиндров и отсоединяем ее от блока.

Замечание.

Соединение уплотнено прокладкой

3. Снимаем датчик детонации

4. Снимаем датчик положения коленчатого вала

5. Снимаем насос охлаждающей жидкости

6. Снимаем стартер

7. Снимаем генератор

Снимаем зубчатый шкивпривода распределительного вала

Замечание

На 16-клапанных двигателях отсоединяем нижнюю штангу крепления двигателя от поперечины передней подвески, торцовым ключом на 17 мм отворачиваем три болта крепления нижнего кронштейна генератора и снимаем кронштейн в сборе со штангой

8. Устанавливаем регулируемый упор под коробку передач и подвешиваем блок цилиндров к подъемному устройству или устанавливаем регулируемый упор под блок цилиндров. Слегка приподнимаем блок цилиндров, разгружая опоры силового агрегата.

9. Снимаем нижнюю крышку картера сцепления и отворачиваем болты крепления коробки передач к блоку цилиндров.

10. Отворачиваем верхнюю гайку болта подушки правой опоры.

11. Торцовым ключом на 13 мм отворачиваем три болта крепления кронштейна правой опоры двигателя к блоку цилиндров.

15. Снимаем кронштейн опоры двигателя в сборе с верхним кронштейном крепления генератора.

16. Торцовым ключом на 15 мм под правым передним крылом автомобиля отворачиваем три болта крепления кронштейна опоры к правому лонжерону.

17. Снимаем кронштейн вместе с правой опорой силового агрегата.

18. Слегка покачивая блок цилиндров, отсоединяем его от коробки передач и вынимаем из моторного отсека.

19. Снимаем маховик

20. Торцовым ключом на 10 мм отворачиваем шесть болтов крепления держателя заднего сальника коленчатого вала и снимаем его.

Замечание

Под держателем установлена прокладка, которую при сборке необходимо заменить.

21. Снимаем масляный насос

22. Торцовым ключом на 17 мм отворачиваем по два болта крепления пяти крышек коренных подшипников.

23. Снимаем крышки коренных подшипников.

24. Вынимаем из крышек нижние вкладыши коренных подшипников.

25. Вынимаем коленчатый вал из блока цилиндров.

26. Из проточек третьей опоры вынимаем два упорных полукольца.

27. Из опор блока цилиндров вынимаем верхние вкладыши коренных подшипников.

28. Отмываем блок цилиндров от грязи и отложений специальным моющим средством, дизельным топливом или керосином, продуваем масляные каналы.

29. Тонкой медной проволокой прочищаем выходные отверстия масляных форсунок на двигателях ваз 2112, 21124 и 21114.

30. Вытираем блок насухо и осматриваем его. Трещины и выкрашивание металла - недопустимы.

31. Микрометром измеряем коренные шейки коленчатого вала, а также шатунные шейки.

Ремонт

Трещины в любом месте коленчатого вала не допускаются

Процесс восстановления шатунных шеек

Таблица ремонтных размеров вкладышей и шеек КВ

Коренные шейки

Шатунные шейки

Номинальный размер

1-ый ремонтный (- 0,25)

2-ой ремонтный(- 0,50)

3-ий ремонтный(- 0,75)

4-ый ремонтный(- 1,00)

Ремонт произвожу наплавкой в углеродной среде.

Диагностика

После ремонта вал должен проходить по следующим параметрам

1) Допустимые биения основных поверхностей коленчатого вала

Установите коленчатый вал крайними коренными шейками на две призмы и проверьте индикатором биение:

Коренных шеек и посадочной поверхности под ведущую шестерню масляного насоса (не более 0,03 мм);

Посадочной поверхности под маховик (не более 0,04 мм);

Посадочной поверхности под шкивы и поверхностей, сопрягающихся с сальниками (не более 0,05 мм).

Смещение осей шатунных шеек от плоскости, проходящей через оси шатунных и коренных шеек, после шлифования должно быть в пределах ±0,35 мм. Для проверки установите вал крайними коренными шейками на призмы и выставьте вал так, чтобы ось шатунной шейки первого цилиндра находилась в горизонтальной плоскости, проходящей через оси коренных шеек. Затем индикатором проверьте смещение в вертикальном направлении шатунных шеек 2, 3 и 4 цилиндров относительно шатунной шейки 1-го цилиндра.

Полукольца заменяются также, если осевой зазор коленчатого вала превышает максимально допустимый - 0,35 мм. Новые полукольца подбирайте номинальной толщины или увеличенной на 0,127 мм, чтобы получить осевой зазор в пределах 0,06-0,26 мм.

Измерение зазора в шатунном подшипнике: 1 - сплющенная калиброванная пластмассовая проволока; 2 - вкладыш; 3 - крышка шатуна; 4 - шкала для измерения зазора

Снимите крышку и по шкале, нанесенной на упаковке, по сплющиванию проволоки определите величину зазора.

Номинальный расчетный зазор составляет 0,02-0,07 мм для шатунных и 0,026-0,073 мм для коренных шеек. Если зазор меньше предельного (0,1 мм для шатунных и 0,15 мм для коренных шеек), то можно снова использовать эти вкладыши.

Сборка

Обработать гнезда фрезой А.94016/10.

Промыть КВ от остатков абразива и продуть сжатым воздухом.

Обезжирить посадочные места под заглушки (уайт-спирит ГОСТ 3134-78, ветошь ТУ 68-178-77-82).

Установить новые заглушки масляных каналов на герметик и зачеканить в 3 точках (оправка А.86010, зубило ГОСТ 7211-72, молоток ГОСТ 2310-77, герметизатор резьбовых соединений ТУ 6-10-1048-78).

32. Подбираем соответствующие кольца, вкладыши подшипников коленчатого вала

33. Обезжириваем гнезда вкладышей в опорах и крышках коренных подшипников.

34. Укладываем в гнезда опор вкладыши коренных шеек с канавками.

35. В крышки подшипников укладываем вкладыши без канавок.

36. В проточки третьей коренной опоры устанавливаем упорные полукольца. С передней стороны сталеалюминиевое (с внутренней стороны белое, а с наружной желтое), с задней - металлокерамическое (желтое с обеих сторон).

Замечание

Полукольца изготавливаются номинальной и увеличенной на 0,127 мм толщины. Осевое перемещение коленчатого вала должно быть в пределах 0,06-0,26 мм

37. Полукольца устанавливаем канавками наружу (к щекам коленчатого вала)

38. Смазываем шейки коленчатого вала и вкладыши чистым моторным маслом.

39. Укладываем вал в опоры блока цилиндров и устанавливаем крышки коренных подшипников.

На крышках рисками обозначены номера подшипников (с 1-го по 5-й). Крышка пятого коренного подшипника обозначена двумя рисками, разнесенными к краям крышки.

При установке в блок крышки должны быть рисками обращены к той стороне блока, на которой устанавливается направляющая указателя уровня масла.

40. Затягиваем болты крепления крышек динамометрическим ключом моментом 68,31-84,38 Н·м (6,97-8,61 кгс·м). Гайки шатунных болтов затягиваем моментом 51 Н·м (5,2 кгс·м)

41. Дальнейшую сборку выполняем в обратном порядке.

6.Способы восстановления КВ

Восстановление деталей имеет большое народнохозяйственное значение. Стоимость восстановления деталей в 2 - 3 раза ниже стоимости их изготовления. Это объясняется тем, что при восстановлении деталей значительно сокращаются расходы материалов, электроэнергии и трудовых ресурсов.

Эффективность и качество восстановления деталей зависят от принятого способа.

Наиболееширокоеприменениеполучилиследующие восстановления деталей: механическая обработка; сварка и наплавка; напыление;гальваническаяихимическаяобработка;обработка давлением; применение синтетических материалов.

Механическую обработку применяют в качестве подготовительной или завершающей операции при нанесении покрытий на изношенные поверхности, а также при восстановлении деталей обработкой под ремонтный размер или постановкой дополнительных ремонтных деталей. Обработкой деталей под ремонтный размер восстанавливают геометрическую форму их рабочих поверхностей, а установкой дополнительной ремонтной детали обеспечивают соответствие размеров детали размерам новой детали.

Сварка и наплавка - самые распространенные способы восстановления деталей. Сварку применяют при устранении механических повреждений деталей (трещин, пробоин и т. п.), а наплавку - для нанесения покрытий с целью компенсации износа рабочих поверхностей. На ремонтных предприятиях применяют как ручные, так и механизированные способы сварки и наплавки. Среди механизированных способов наплавки наибольшее применение нашли автоматическая дуговая наплавка под флюсом и в среде защитных газов и вибродуговая наплавка. В настоящее время при восстановлении деталей применяют такие перспективные способы сварки, как лазерная и плазменная.

Напыление как способ восстановления деталей основан на нанесении распыленного металла на изношенные поверхности деталей. В зависимости от способа расплавления металла различают следующие виды напыления: дуговое, газопламенное, высокочастотное, детонационное и плазменное.

Гальваническая и химическая обработка основаны на осаждении металла на поверхности деталей из растворов солей гальваническим или химическим методом. Для компенсации износа деталей наиболее часто применяют хромирование, железнение и химическое никелирование. Нанесение на поверхности деталей защитных покрытий осуществляют с помощью гальванических процессов (хромирование, никелирование, цинкование, меднение), а также химических (оксидирование и фосфатирование).

Обработкой давлением восстанавливают не только размеры деталей, но и их форму и физико-механические свойства. В зависимости от конструкции детали используют такие виды обработки давлением, как осадку, раздачу, обжатие, вытяжку, накатку, правку и др.

Перечисленные способы восстановления деталей обеспечивают требуемый уровень качества и надежную работу деталей в течение установленных межремонтных пробегов автомобилей. Необходимый уровень качества восстановленных деталей достигается при правильном выборе технологического способа, а также управлением процессами нанесения покрытий и последующей обработки деталей. На качество восстановленных деталей влияют свойства исходных материалов, применяемых при нанесении покрытий, и режимы обработки.

Для восстановления шатунных шеек КВ под номинальный размер:

1) Промываю КВ.Замеряю диаметры шатунных шеек. Затемустановливаю КВ вал на токарном станке, для этого коленчатый вал устанавливается на станке таким образом, чтобы его ось вращения проходила через одну из шатунных шеек, для этого необходимы центросместители, которые совмещают ось вращения шатунных шеек с осью вращения шпинделя станка, причем величина смещения должна быть равна радиусу кривошипа.(37.8 мм)

Смещенный коленчатый вал, вращаясь вокруг оси одной из шатунных шеек несбалансирован. Такой большой дисбаланс при вращении обязательно приведет к деформации самого коленчатого вала и элементов станка, в результате чего качество шлифовки коленвала резко снизится - исказится форма шейки (появится эллипс), ее ось окажется непараллельной оси коренных шеек.

Исключить или, по крайней мере, значительно уменьшить дисбаланс коленчатого вала позволяют специальные грузы, закрепляемые на планшайбах напротив патронов станка. Масса и расположение балансировочных грузов подбирается в зависимости от массы коленчатого вала и радиуса кривошипа.

Обрабатываю (снимаю имеющиеся риски и задиры) резцом из стали ВК61 и 4 шатунные шейки. После обработкиустанавливаем КВ таким образом что бы теперь с осью вращения станка совпадали 2 и 3 шатунные шейки. Срезаю по 0,5 мм.

2) Замеряю получившиеся размеры шеек. Произвожу наплавку шеек с помощью сварочного выпрямителя ВДУ-506 в среде углекислого газа. Подачу электродной проволоки к месту наплавки произвожу при помощи наплавочной головки ОКС-6569 используя при этом проволоку 30ХГСА. (наплавочная проволока, легированная конструкционная сталь, А-высококачественная; 0,3%- углерода, Х - хром 1%, Г - марганец 1%, С - кремний 1%)с припуском на токарную обработку, шлифование и суперфиниширование.

Наплавка производится на постоянном токедиаметром электрода 1,2 мм из кассеты непрерывно подается в зону сварки. Ток 150..190 А и напряжением 19…21 Вк электродной проволоке подводится через мундштук и наконечник, расположенные внутри газоэлектрической горелки.этом скорость наплавки составляет 20…30 м/ч, смещение электродной проволоки 18…20 мм, шаг наплавки 18…20 мм, вылет электрода 10…13 мм, расход углекислого газа 8…9 л/мин.При наплавке металл электрода и детали перемешивается, толщина наплавляемого слоя 0,8…1,0мм. В зону горения дуги под давлением 0,05…0,2 МПа по трубке подается углекислый газ, который вытесняя воздух, защищает расплавленный металл от вредного действия кислорода и азота воздуха.

Углекислый газ из баллона 7 подается в зону горения. При выходе из баллона 7 газ резко расширяется и переохлаждается. Для подогрева его пропускаю через электрический подогреватель 6. Содержащуюся в углекислом газе воду удаляетсяс помощью осушителя 5, который представляет собой патрон, наполненный обезвоженным медным купоросом или силикагелем. Давление газа понижают с помощью кислородного редуктора 4, а расход его контролируют расходомером 3.

Установка для наплавки в углекислом газе

1 — кассета с проволокой; 2 — наплавочный аппарат; 3 — расходомер; 4 — редуктор; 5 — осушитель; 6 — подогреватель; 7 — баллон с углекислым газом; 8 — деталь

3) Обрабатываю шейки КВ на токарном станке, оставляя припуск на шлифование 0,3-0,5мм

4) Шлифую шейки с использованием шлифовального круга типа 24А40НС 16 А5 (ГОСТ 2424—75) на станке ЗУ131, до номинального размера 47,850 мм, оставляя припуск на суперфиниширование. При соприкосновении шлифовального круга с шейкой коленчатого вала включается подача охлаждающей жидкости.

Режим шлифования: частота вращения коленчатого вала 1,03 с"1 (62 обмин), шлифовального круга — 13—13,8 с"1 (780— 830 обмин); шлифовальный круг правят алмазным карандашом марки CI—1 (ГОСТ 607—SO Е).

Овальность и конусность не должна превышать0,005

5) Для доводки шеек вместо полирования применяю суперфиниширование. Суперфиниширование выполняю головкой, оснащенной абразивными брусками на специальном полуавтомате 3875 К.Зернистость брусков 4-8.Суперфиниширование выравнивает точность размеров. При шлифовании валов под суперфиниширование оставляют припуск 0,005мм.

6) Проверяю КВ на биение, овальность и конусность шеек.

7.Химический состав и механические свойства КВ

Механические свойства

Сталь - это сплав железа с углеродом в котором содержится углерода до 2,14%

Стали классифицируются по:

1) Химическому составу:

а) углеродистые

б) легированные

2) Назначению:

а) Конструкционные

б) Инструментальные

в) Специальные

3) Качеству:

а) Обыкновенное

б) Качественное

в) Высококачественное

г) Особовысококачественное

4) Степени раскисления:

а) Кипящее (КП)

б) Спокойное (СП)

в) Полуспокойное (ПС)

5)Способ поставки делятся на 3 группы:

группа А - сталь поставляется по механическим свойствам, буква А не указывается.

группа Б - сталь поставляется по химическому составу

группа В = А+Б

Чугун - это сплав железа с углеродом в котором углерода содержится от 2,14- 6,67%.

Сорта чугунов.

1. Белый чугун. Углерод находится в виде цементита (Fe3C). Твердый, хрупкий плохо обрабатывается резанием.

2. Серый чугун. Углерод находится в свободном состоянии в виде графита. Это литейные чугуны, в них графит имеет форму пластинок. Менее прочный, обладает литейными свойствами, хорошо сопротивляется износу, способность гасит вибрации.

3. Легированный серый чугун. Имеет мелкозернистую структуру и лучшее строение графита за счет присадок в небольших количествах никеля, хрома и молибдена иногда титана и меди.

4.Высокопрочный чугун. Разновидность серого чугуна модифицированного магнием. Одновременно в жидкий чугун вводят железо с кремнием, в результате получают графит в шаровидной форме.

5. Ковкий чугун. Высокие анти коррозионные свойства, хорошо работает в среде влажного воздуха, воды, топочных газов. Из него изготавливают детали, которые воспринимают ударные нагрузки.

Коленчатый вал ВАЗ-2112 изготовлен из ВЧ. Цифрры за буквами ВЧ - высокопрочный чугун означают временное сопротивление разрушению при растяжении. Например, чугун марки ВЧ 60 должен иметьу в =60 кгс/мм 2 илиу в =600 МПа. Для высокопрочного чугуна характерна шаровидная форма графита, получают его путем модифицирования низкозернистого серого чугуна чистым магнием или магнийсодержащими добавками. Высокопрочный чугун нашел широкое применение в автомобилестроении (коленчатые и распределительные валы, шестерни различных механизмов, блоки цилиндров и т.п.), тяжелом машиностроении (детали турбин, прокатные валки, шаботы молотов и т.п.), транспортном, сельскохозяйственном машиностроении (шестерни и звездочки, диски муфт, различного рода рычаги, опорные катки и т.п.) и во многих других отраслях.

Химический состав.

В нем содержится: углерод (С)=3,3-3,5%, кремний (Si)=1,4-2,2%, марганец (Мn)=0,7-1,0%, фосфор (P)= не более 0,2%,сера (S)= не более 0,15%

Механические свойства высокопрочного чугуна предел прочности (временное сопротивление) у в ВЧ60 = 600 Мпа; условный предел текучести у 0,2 = 310-320 МПа; относительное удлинение (пластичность) д = 10-22 %; твердость ВЧ45 140-225, ВЧ50 НВ 153-245 НВ;

Твердость по Бринеллю HB= 170-241*10-1 МПа, ?в= 196 МПа

8.Приспособления применяемые при ремонте

Наплавки в среде углекислого газа заключается в том, что электродная проволока из кассеты непрерывно подается в зону сварки как показано на рисунке. Ток к электродной проволоке подводится через мундштук и наконечник, расположенные внутри газоэлектрической горелки. При наплавке металл электрода и детали перемешивается. В зону горения дуги под давлением 0,05...0,2 МПа по трубке подается углекислый газ, который, вытесняя воздух, защищает расплавленный металл от вредного действия кислорода и азота воздуха.

Схема наплавки в среде углекислого газа:1 — мундштук; 2 — электродная проволока; 3 — горелка; 4 — наконечник; 5 — сопло горелки; 6 — электрическая дуга; 7 — сварочная ванна; 8 — наплавленный металл; 9 — наплавляемая деталь.

Схема установки для дуговой наплавки в углекислом газе: 1 — кассета с проволокой; 2 — наплавочный аппарат; 3 — расходомер; 4 — редуктор; 5 — осушитель; 6 — подогреватель; 7 — баллон с углекислым газом; 8 — деталь.

Наплавку в среде углекислого газа производят на постоянном токе обратной полярности. Тип и марку электрода выбирают в зависимости от материала восстанавливаемой детали и требуемых физико-механических свойств наплавленного металла. Скорость подачи проволоки зависит от силы тока, устанавливаемой с таким расчетом, чтобы в процессе наплавки не было коротких замыканий и обрывов дуга. Скорость наплавки зависит от толщины наплавляемого металла и качества формирования наплавленного слоя. Наплавку валиков осуществляют с шагом 2,5...3,5 мм. Каждый последующий валик должен перекрывать предыдущий не менее чем на 1/3 его ширины.

Твердость наплавленного металла в зависимости от марки и типа электродной проволоки 200...300 НВ.

Расход углекислого газа зависит от диаметра электродной проволоки. На расход газа оказывают также влияние скорость наплавки, конфигурация изделия и наличие движения воздуха.

После того как нанесли, определённыйслой металла начинаем наружную обработку поверхности с помощью шлифования.

После установки заготовки расставляют упоры для измерения направления движения стола. Упоры продольной подачи располагают так, чтобы круг при шлифовании не задевал за хомутик и не выходил из контакта с заготовкой. Установленные упоры нужно жестко закрепить. Чтобы установить взаимное расположение круга и заготовки, в центры устанавливают эталонную деталь. Левый торец ее используют как базу для установки шлифовальной бабки. При любой длине шлифуемой заготовки положение этого торца остается неизменным.

Перед пробным шлифованием вначале включают электродвигатель шлифовального круга, затем электродвигатель вращения заготовки. Потом подводят круг к заготовке до появления искры и вручную перемещают стол. Выполнив два-три прохода, включают автоматическую подачу и после пробного шлифования измеряют диаметры заготовки у обоих ее торцов. Если есть конусность, то выверяют положение стола, добиваясь цилиндричности обрабатываемой поверхности.

Токарно-винторезный станок предназначен для наружной и внутренней обработки, включая нарезание резьбы, единичных и малых групп деталей

Общий вид и размещение органов управления токарно-винторезного станка модели 16К20

1- станина, рукоятки управления: 2 - сблокированная управление, 3,5,6 - установки подачи или шага нарезаемой резьбы, 7, 12 - управления частотой вращения шпинделя, 10 - установки нормального и увеличенного шага резьбы и для нарезания многозаходных резьб, 11 — изменения направления нарезания резьбы (лево- или правозаходной), 17 - перемещения верхних салазок, 18 - фиксации пиноли, 20 - фиксации задней бабки, 21 - штурвал перемещения пиноли, 23 - включения ускоренных перемещений суппорта, 24 - включения и выключения гайки ходового винта, 25 - управления изменением направления вращения шпинделя и его остановкой, 26 - включения и выключения подачи, 28 - поперечного перемещения салазок, 29 - включения продольной автоматической подачи, 27 - кнопка включения и выключения главного электродвигателя, 31 - продольного перемещения салазок; Узлы станка: 1 - станина, 4 - коробка подач, 8 - кожух ременной передачи главного привода, 9 - передняя бабка с главным приводом, 13 - электрошкаф, 14 - экран, 15 - защитный щиток, 16 - верхние салазки, 19 - задняя бабка, 22 - суппорт продольного перемещения, 30 - фартук, 32 - ходовой винт, 33 - направляющие станины.

Круглошлифовальный станок - предназначен для обработки деталей шлифованием.

Общий вид универсального круглошлифовального станка мод. ЗУ131:

1 — станина, 2 — электрооборудование, 3 — передняя бабка, 4 — приспособление для внутреннего шлифования, 5 —кожух шлифовального круга, 6 — механизм подач шлифовальной бабки, 7 — шлифовальная бабка, 8 — задняя бабка, 9 — система гидропривода и смазки, 10 — система гидроуправления, 11 — шлифовальный круг, 12 — механизм ручного перемещения стола

Сварочный универсальный выпрямитель ВДУ-506. Является регулируемым тиристорным выпрямителем с жесткой или падающей внешней характеристикой. Отличием от версии ВДУ-506С является классическое построение и отсутствие комбинированной вольт-амперной характеристики в режиме полуавтоматической сварки. Работает в комплекте с полуавтоматом ПДГО-510-5, со стабилизацией скорости подачи сварочной проволоки и возможностью удаления подающего механизма от выпрямителя на расстояние до 30м, оптимален для цеховых условий при сварке на токах дуги до 450А (ПВ=100%).

Микрометр гладкий. Гладким микрометром называется средство для измерения наружных линейных размеров. Цена деления микрометра 0,01 мм.

1 - скоба; 2 - жесткая пятка; 3 - калибр (концевая мера) для установки микрометра на нуль; 4 - подвижная пятка (микровинт); 5 - стебель; 6 - микрометрическая головка; 7 - установочный колпачок; 8 - трещоточное устройство; 9 - тормозное приспособление.цена деления шкалы барабана, мм......0,01

Индикатором часового типа называетсяизмерительнаяголовка, т. е. средство измерений, имеющее механическую передачу, которая преобразует малые перемещения измерительного наконечника в большие перемещения стрелки, наблюдаемые по шкале циферблата.

а — общий вид; б — схема зубчатой передачи

По внешнему и внутреннему устройству индикатор этот похож на карманные часы, почему за ним и закрепилось такое название.

Конструктивно индикатор часового типа представляет собой измерительную головку с продольным перемещением измерительного наконечника. Основанием этого индикатора является корпус 13, внутри которого смонтирован преобразующий механизм — реечно-зубчатая передача. Через корпуспроходит измеритель — стержень-рейкас измерительным наконечником 4. На стержне 1 нарезана рейка движения которой передаются реечным (5) и передаточным (7) зубчатыми колесами, а также трубкой 9 на основную стрелку 8. Величина поворота стрелки 8 отсчитывается по круговой шкале — циферблату. Для установки индикатора против отметки «О» круговая шкала поворачивается ободком 2.

Круговая шкала индикатора часового типа состоит из 100 делений, цена каждого деления 0,01 мм. Это означает, что при перемещении измерительного наконечника на 0,01 мм стрелка индикатора передвинется на одно деление круговой шкалы.

10.Режущий инструмент

Токарный резец . Служит для снятия слоя металла или стружки для предания изделию заданной формы или размеров.

Резцы состоят из рабочей части (головки) и стержня (тела).

На рабочей части путем заточки образуются:

передняя поверхность, по которойсходит стружка;

задняя главная поверхность, обращенная к поверхности резания;

задняя вспомогательная поверхность, обращеннаяк обработанной поверхности.

Пересечением передней и задней главных поверхностей образуется главноережущеелезвие,выполняющееосновнуюработурезания.

Пересечением передней и задней вспомогательных поверхностей образуетсявспомогательное режущее лезвие, срезающее меньшую частьснимаемогослояматериала.

В зависимости от назначения, резцы имеют одно или два вспомогательных режущихлезвия и соответственно этому одну или две задние вспомогательныеповерхности.

Р6М5 - быстрорежущая сталь, инструментальная, легированная; Р6 - быстрорежущая 6% вольфрама, М5 - молибден 5%.

Резцы изготовленные из инструментальной стали, выдерживают нагрев до температуры 600˚С, не теряя своих режущих свойств. После термической обработки инструмент из быстрорежущих сталей имеет твердость HRC 62-63.

Так же для изготовления резцов применяются сплавы вольфрамокобальтовые (ВК) для обработки хрупких материалов: чугун, бронза, фарфора. Они состоят из карбидов вольфрама и кобальта, в сплавах содержится до 10% кобальта. Теплостойкость ВК 900˚С: ВК6, ВК8. ВК8- вольфрамовый твердый сплав, К8- кобальт 8%, остальное карбидо-вольфрамы. У сплавов титано-кобальтовых (ТК) твердость больше, чем у вольфрамокобальтовых. Так же теплостойкость у ТК 1000˚С, однако их прочность ниже (при одинаковом содержании кобальта).Сплавы Т15К6, Т5К10 используют для обработки материалов со сливной стружкой - сталей. Т15К6 -титано-кобальтовый сплав, Т15- титан 15%, К6- кобальт 6%, остальное карбидо-титаны.

Шлифовальный круг

Абразивный инструмент изготавливается из искусственных и природных абразивных материалов путем прессования массы, состоящей из шлифовального зерна (абразив — мелкие, твёрдые, острые частицы) и связки, с последующей термической и механической обработкой. Используются абразивы для механической обработки (в том числе для придания формы, обдирки, шлифования, полирования) разнообразных материалов и изделий из них Действие абразивов сводится к удалению части материала с обрабатываемой поверхности. Абразивы обычно имеют кристаллическую структуру и в процессе работы изнашиваются таким образом, что от них откалываются мельчайшие частички, на месте которых появляются новые острые кромки (благодаря хрупкости). По размеру зёрен абразивы характеризуются шкалой от 4 (грубейший) до 1200 (тончайший).

Обработка поверхностей шлифовальными кругами обеспечивает шероховатость Ra 1,25-0,02 мкм.

Схемы круглого наружного шлифования:

а — шлифование с продольными рабочими ходами: 1 — шлифовальный круг; 2 — шлифуемая заготовка; б — глубинное шлифование; в — врезное шлифование; г — комбинированное шлифование; S np — продольная подача; S n — поперечная подача; t — глубина обработки

Устройства для установки и крепления шлифовальных кругов:

1— шпиндель; 2 — фланцы; 3 — шлифовальные круги; 4 — прокладки; 5 — гайки; 6, 7 — переходные фланцы; 8 — кольцевой паз; 9 — винты

11.Рабочее место автослесаря

Рабочее место представляет участок площади, соответствующим образом оборудованный и оснащенный для выполнения работы одним рабочим или бригадой рабочих. Оно должно быть обеспечено всем необходимым для бесперебойного выполнения производственного задания, а работы должны выполняться в строгом соответствии с регламентированной технологией.

Слесарь по ремонту автомобилей автотранспортного предприятия выполняет работы, связанные с обслуживанием и текущим ремонтом подвижного состава на специализированных постах в гаражных модулях.

Для выполнения технического обслуживания и текущего ремонта посты оборудуют осмотровыми устройствами, обеспечивающими доступ к автомобилю со всех сторон.

Организация рабочего места слесаря по ремонту автомобилей:

1 — стул подъемно-поворотный; 2 — верстак двухтумбовый; 3 — стол для мойки и сушки деталей; 4 — стеллаж-подставка; 5 — кран-балка, грузоподъемность 1 т

Осмотровые канавы по ширине подразделяются на:

— узкие (межколейные) (рис.20 а);

— широкие (рис. 20 в).

Они могут быть тупиковыми или прямоточными. С тупиковых канав автомобили съезжают задним ходом, с прямоточных — передним.

Длина канавы должна превышать длину автомобиля на 1,0—1,2 м, а глубина составляет 1,4—1,5 м для легковых и 1,2—1,3 м для грузовых автомобилей и автобусов. Ширина узкой канавы 0,9—1,1 м, широкой — 1,4—3,0 м.

Канавы имеют ступенчатые лестницы, с боков по кромке — направляющие реборды для колес автомобиля. В канавах оборудуют ниши со светильниками, которые могут использоваться для хранения инструмента. Стены канав облицовывают керамической или пластмассовой плиткой.

Подъемники предназначены для подъема автомобилей и облегчения доступа к ним снизу.

Подъемники могут быть:

Стационарные:

Гидравлические (одно- и двухплунжелные)

Электромеханические (двух-, трех- и четырехстоечные)

Передвижные:

Гидравлические домкраты

Подъемники с гидравлическим или механическим приводом, размещаемые в осмотровой канаве.

Инструмент и приспособления. Посты технического обслуживания в зависимости от назначения оборудуют необходимым комплектом приспособлений и инструментом.

Для выполнения разборно-сборочных и крепежных работ используют комплекты слесарно-монтажных инструментов (рис.21), динамометрические ключи и съемники.

В комплект слесарно-монтажного инструментавходят:

—гаечные двусторонние ключи;

—торцовые сменные головки;

—разводной ключ;

—гаечные накидные двусторонние ключи;

—слесарный молоток;

—бородок;

—пассатижи;

—отвертки;

—коловорот;

—специальные ключи (для шпилек, свечей зажигания и др.).

Набор инструментов для слесаря монтажника

При сборке ответственных резьбовых соединений (крепление головки блока цилиндров, шатунных крышек и т. п.) применяют динамометрический ключ позволяющий затягиватьгайки и болты с определенным усилием. Момент затяжки (в килограммометрах) определяют по специально установленной на ключе шкале (индикатору).

Динамометрический ключ:

1— головка; 2 — стрелка; 3 — шкала;4 — рукоятка; 5 — упругийстержень

Для вывертывания и завертывания шпилек применяют эксцентриковый ключ (рис.23) , имеющий ролик с накатанной поверхностью и закрепленный эксцентрично на оси ключа. Полую стойку надевают на шпильку, отводя ролик. При повороте ключа за вороток ось заклинивается и вращается вместе с ключом, обеспечивая вывертывание или завертывание шпильки.

Эксцентриковый ключ для шпилек:

1 — стойка; 2 — вороток; 3 — ось;

4 — ролик

При техническом обслуживании автомобилей применяют различные типы съемников, которые могут быть как универсальные, так и предназначенные для выполнения конкретной операции.

Съемники:

а — клапана; б — крыльчатки водного насоса; в — шестерни; 1 — скоба; 2 — винт.

1.Перед техническим обслуживанием или ремонтом машины на подъемнике(гидравлическом, электромеханическом) на пульте управления подъемником вывесить предупреждающий знак «Не трогать - под автомобилем работают люди!» Плунжер подъемника зафиксировать от самопроизвольного опускания упором (штангой).

2.Слить бензин, масло и воду при ремонте деталей и агрегатов, связанных с системами охлаждения и смазки. Не допускать расплескивания и разлива жидкостей.

Случайно пролитые жидкости следует засыпать песком или опилками, которые потом необходимо убрать с помощью совка и щетки.

3.Обеспечить безопасность работы под машиной:

Затормозить ручным тормозом;

Включить низшую передачу;

Выключить зажигание (подачу топлива);

Под колеса подложить упоры (башмаки).

4.При работах, связанных с проворачиванием коленчатого или карданного вала, дополнительно проверить выключение зажигания, подачу топлива (для дизельных автомобилей), поставить рычаг переключения передач в нейтральное положение, освободить рычаг ручного тормоза.

После выполнения необходимых работ затянуть ручной тормоз и вновь включить низшую передачу

5.При ремонте машины вне осмотровой канавы, эстакады или подъемника использовать лежаки или подстилки.

6. Влезать под машину и вылезать из-под нее только со стороны, противоположной проезду. Под машиной размещаться между колесами вдоль машины.

7.Перед снятием и установкой агрегатов и узлов (двигателей, рессор, задних и передних мостов и т.п.) разгрузить их от веса кузова путем поднятия кузова подъемным механизмом с последующей установкой козелков.

8.Разборку и сборку рессор производить с помощью специальных приспособлений. Проверять совпадение отверстия ушка рессоры и серьги только с помощью бородка или оправки. Запрещается такую проверку производить пальцами.

9.Снятие отдельных агрегатов и деталей (тормозных и клапанных пружин, барабанов, рессорных пальцев и т.п.), связанное с приложением значительных физических нагрузок или с неудобством в работе, производить с применением приспособлений (съемников), обеспечивающих безопасность работ.

10.Перед снятием колес убедиться в надежной установке машины на козелках и в наличии упоров под неснятыми колесами.

11. Перед демонтажем шины полностью выпустить воздух из камеры колеса.

12.Демонтаж и монтаж шин должны выполняться в шиномонтажном отделении с применением для этих работ специального оборудования и инструмента с применением ограждений, обеспечивающих безопасность.

13.Перед сборкой колеса проверить состояние съемных фланцев обода и стопорного кольца. Фланцы обода и стопорные кольца должны быть очищены от ржавчины, не иметь вмятин, трещин, заусенцев. Диски колес, стопорные кольца и съемные фланцы должны соответствовать размерам шин.

14.При монтаже шины следует вводить стопорное кольцо всей его внутренней поверхностью в выемку на диске колеса.

15.Накачивать шины воздухом необходимо в специальных приспособлениях. Перед накачиванием убедиться, что запорное кольцо полностью лежит в замковом пазе. Допускается исправлять положение шины на диске постукиванием только после прекращения поступления воздуха.

16.Перед обслуживанием и ремонтом днища кузова легкового автомобиля на поворотном стенде необходимо укрепить на нем автомобиль, слить топливо из топливных баков и воду из системы охлаждения, закрыть плотно маслозаливную горловину двигателя и снять аккумуляторную батарею.

17.Промывать детали керосином необходимо в специально отведенном месте. Обдувать их сжатым воздухом в специальных закрытых шкафах, оборудованных вытяжной вентиляцией.

18.Четко согласовать свои действия при выполнении работы совместно с другими рабочими.

Техническое обслуживание и ремонт автомобиля при работающем двигателе,кромеслучаеврегулировкисистемпитанияи электрооборудования и опробования тормозов;

Производить ремонтные работы на автомобиле, вывешенном только на одних подъемных механизмах, без подставок;

Работать под автомобилем без лежаков или подстилок, лежа на земле или полу;

Применять случайные предметы (доски, кирпичи и т. п.) в качестве подставок или тормозных упоров (башмаков);

Работатьсповрежденнымиилинеправильноустановленными упорами, а также устанавливать на упоры груженый кузов;

Выбивать при демонтаже диски колес кувалдой или молотком;

Во время накачивания шины осаживать стопорное кольцо молотком или кувалдой;

Подходить к открытому огню, курить или зажигать спички, если руки или спецодежда смочены бензином.

20.Перед испытанием и опробованием тормозов на стенде автомобиль закрепить цепью или тросом, исключающими его скатывание со стенда.

21.До пуска двигателя автомобиль затормозить, рычаг коробки передач поставить в нейтральное положение.

22.Пуск двигателя осуществлять с помощью стартера. Пуск двигателя при открытом капоте производить при отсутствии посторонних лиц на рабочем месте.

При обкатке двигателя на стенде касаться вращающихся частей;

Работа двигателя в закрытом невентилируемом помещении

Список литературы

Епифанов Л.И., Епифанов Е.А. Техническое обслуживание и ремонт автомобилей: Учебное пособие для студентов учреждения среднего профессионального образования. - М.: ФОРУМ: ИНФРА-М, 2003.- 280 с.: ил. - (Серия «Профессиональное образование»)

Карагодин В.И., Митрохин Н.Н. Ремонт атвомобилей и двигателей: Учеб. для студ. сред. проф. учеб. заведений. - М.: Мастерство; Высш. школа, 2001. - 496 с.

Козлов Ю.С. Материаловедение. Издательство «АТАР», 1999 - 180 с.

Кубышкин Ю.И., Маслов В.В., Сухов А.Т. ВАЗ-2110, -2111, -2112. Эксплуатация, обслуживание, ремонт, тюнинг. Иллюстрированное руководство. - М.: ЗАО «КЖИ «За рулем», 2004. - 280 с.: ил. - (Серия «Своими силами»).

Шестопалов С.К. Устройство, техническое обслуживание и ремонт легковых автомобилей: Учеб. для нач. проф. образования; Учеб. пособие для сред. проф. образования. - 2-е изд., стер. - М.: Издательский центр «Академия»; ПрофОбрИздат, 2002. - 544 с

Адаскин А.М. Материаловедение (металлообработка): Учебник для нач. проф. образования: Учеб. пособие для сред. проф. образования/ А. М. Адаскин, В. М. Зуев.- 3-е изд., стер.- М.: Издательский центр «Академия», 2004. - 240 с.

Макиенко Н.И. Общий курс слесарного дела: Учеб. для ПТУ. - 3-е изд., испр. - М.: Высш. шк., 1989. - 335 с.: ил.

 

Возможно, будет полезно почитать: