Схема включения двигателя постоянного тока параллельного возбуждения. Вольдек. Электрические машины

Моторы, работающие на постоянном токе редко встречаются в домашнем хозяйстве. Но они всегда стоят во всех детских игрушках, работающих от батареек, которые ходят, бегают, ездят, летают и т. п. Двигатели постоянного тока (ДПТ) устанавливаются в автомобилях: в вентиляторах и различных приводах. Они почти всегда используются на электротранспорте и реже в производстве.

Преимущества ДПТ по сравнению с асинхронными моторами:

  • Хорошо поддаются регулировке.
  • Отличные пусковые свойства.
  • Частоты вращения могут быть более 3000 об/мин.

Недостатки ДПТ:

  1. Низкая надежность.
  2. Сложность изготовления.
  3. Высокая стоимость.
  4. Большие затраты на обслуживание и ремонт.

Принцип действия электродвигателя постоянного тока

Устройство двигателя аналогично синхронным двигателям переменного тока. Повторяться не буду, если не знаете, тогда смотрите в этой нашей .

Любой современный электромотор работает на основе закона магнитной индукции Фарадея и «Правила левой руки». Если к нижней части обмотки якоря подключить электрический ток в одном направлении, а к верхней- в обратном- он начнет вращаться. Согласно правилу левой руки, проводники, уложенные в пазах якоря, будут выталкиваться магнитным полем обмоток корпуса ДПТ или статора.

Нижняя часть будет выталкиваться вправо, а верхняя – влево, поэтому якорь начнет вращаться до момента пока части якоря не поменяются местами. Для создания непрерывного вращения необходимо постоянно менять местами полярность обмотки якоря. Чем и занимается коллектор, который при вращении коммутирует обмотки якоря. Напряжение от источника тока подается на коллектор при помощи пары прижимных графитовых щеток.

Принципиальные схемы электродвигателя постоянного тока

Если двигатели переменного тока довольно просто подключаются, то с ДПТ все сложнее. Вам необходимо знать марку мотора, и затем в интернете узнавайте про его схему включения.

Чаще всего у средних и мощных моторов постоянного тока есть в клеммной коробке отдельные выводы от якоря и от обмотки возбуждения (ОВ). Как правило, на якорь подаётся полное напряжение электропитания, а на обмотку возбуждения -регулируемый ток реостатом или переменным напряжением. От величины тока ОВ и будут зависеть обороты ДПТ. Чем он выше, тем быстрее скорость вращения.

В зависимости от того как подключен якорь и ОВ , электродвигатели бывают с независимым возбуждением от отдельного источника тока и с самовозбуждением, которое может быть параллельным, последовательным и смешанным.

На производстве применяются двигатели с независимым возбуждением ОВ, которая подключается к отдельному от якоря источнику питания. Между обмотками возбуждения и якоря нет электрической связи.

Схема подключения с параллельным возбуждением по своей сущности аналогична схеме с независимым возбуждением ОВ. С той лишь разницей, что отпадает необходимость в использовании отдельного источника питания. Двигатели при включении по обоим этим схема обладают одинаковыми жесткими характеристиками, поэтому применяются в станках, вентиляторах и т. п.

Моторы с последовательным возбуждением применяются, когда необходим большой пусковой ток, мягкая характеристика. Они применяются а трамваях, троллейбусах и электровозах. По этой схеме обмотки возбуждения и якоря подключаются между собой последовательно. При подаче напряжения токи в обоих обмотках будут одинаковы. Главный недостаток заключается в том, что при уменьшении нагрузки на вал меньше 25% от номинала, происходит резкое увеличение частоты вращения, достигающее опасных для ДПТ значений. Поэтому для безотказной работы необходима постоянная нагрузка на вал.

Иногда применяются ДПТ со смешанным возбуждением , при котором одна обмотка ОВ соединяется последовательно якорной цепи, а другая параллельно. В жизни редко встречается.

Реверсирование двигателей постоянного тока

Что бы изменить направление вращение ДПТ с последовательным возбуждением необходимо поменять направления тока в ОВ или обмотке якоря. Практически, это делается изменением полярности: меняем плюс с минусом местами. Если же поменять одновременно полярность в цепях возбуждения и якоря, тогда направление вращения не изменится. Аналогично делается реверс и для моторов, работающих на переменном токе.

Реверсирование ДПТ с параллельным или смешанным возбуждением лучше производить изменением направления электрического тока в обмотке якоря. При разрыве обмотки возбуждения, ЭДС достигает опасных величин и возможен пробой изоляции проводов.

Регулирование оборотов двигателей постоянного тока

ДПТ с последовательным возбуждением проще всего регулировать переменным сопротивлением в цепи якоря. Регулировать можно только на уменьшение числа оборотов в соотношении 2:1 или 3:1. При этом происходят большие потери в регулировочном реостате (R рег). Данный метод используется в кранах и электрических тележках, у которых бывают частые перерывы в работе. В других случаях используется регулировка оборотов вверх от номинала при помощи реостата в цепи обмотки возбуждения, как показано на правом рисунке.

ДПТ с параллельным возбуждением так же можно регулировать частоту оборотов вниз при помощи сопротивления в цепи якоря, но не более 50 процентов от номинала. Опять же будет нагрев сопротивления из-за потерь электрической энергии в нем.

Увеличить же обороты максимум в 4 раза позволяет реостат в цепи ОВ. Самый простой и распространенный метод регулировки частоты вращения.

На практике в современных электромоторах данные методы регулировки из-за своих недостатков и ограниченности диапазона регулирования редко применяются. Используются различные электронные схемы управления.

Похожие материалы.

Глава десятая ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

§ 10-1. Общие сведения о двигателях постоянного тока

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения.

Схемы двигателей и генераторов с данным видом возбуждения одинаковы (рис. 9-1). В двигателях независимого возбуждения токи

якоря 1 а и нагрузки / равны: / = 1 а, в двигателях параллельного и смешанного возбуждения / = = / а + /,ив двигателях последовательного возбуждения / = 1 а = / в. С независимым.возбуждением от отдельного источника тока обычно выполняются мощные двигатели с целью более удобного и экономичного регулирования

Рис 10-1 Энергетическая диаграмма двигателя параллельного возбуждения

величины тока возбуждения. По своим свойствам двигатели независимого и параллельного возбуждения почти одинаковы, и поэтому первые ниже отдельно не рассматриваются.

Энергетическая диаграмма двигателя параллельного возбужден ния изображена на рис. 10-1. Первичная мощность Р х является электрической и потребляется из питающей сети. За счет этой мощности покрываются потери на возбуждение р в и электрические потери рд ла = P a Ra в цепи якоря, а оставшаяся часть составляет электромагнитную мощность якоря Р Эм = EJ a , которая превращается в механическую мощность Р мх. Потери магнитные р мг, добавочные р д и механические р„ х покрываются за счет механической мощности, а остальная часть этой мощности представляет собой, полезную механическую мощность Р 2 на валу.

Аналогичные энергетические диаграммы, иллюстрирующие преобразование энергии в двигателе, можно построить и для других типов двигателей.

Уравнение вращающих моментов. Электромагнитный момент двигателя

который является движущим и действует в сторону вращения, расходуется на уравновешивание тормозящих моментов: 1) момента М о, соответствующего потерям р ш, р д и р мх, покрываемым за счет механической мощности [см. равенство (9-6)]; 2) М в - момента нагрузки на валу, создаваемого рабочей машиной или механизмом; 3) М та - динамического момента [см. равенство (9-7)]. При этом

является статическим моментом сопротивления.

При установившемся режиме работы, когда п = const и поэтому

В дальнейшем индекс «эм» у М Эм будем опускать. Обычно М о мал по сравнению с М в, и поэтому приблизительно можно считать, что при установившемся режиме работы М э „ = М является полезным моментом на валу и уравновешивается моментом М в. Можно также величину М о включить в величину М в.

Укажем, что если выразить Р в кет, a Q - через число оборотов в минуту п н, то между Р, п м и М в кгс >м будет существовать зависимость

Уравнения напряжения и тока. В двигателях направление действия э. д. с. якоря Е а противоположно направлению тока якоря / о (см. § 1-1), и поэтому Е а называется также противоэлектродвижущей






силой якоря. Уравнение напряжения для цепи якоря двигателя можно записать следующим образом:

Здесь R a - полное сопротивление цепи якоря [см. равенство (9-15)]. В режиме двигателя всегда U >> Е а. Из равенства (10-4) следует, что

Скорость вращения и механические характеристики. Решая уравнение (10-4) совместно с (10-6) относительно п, находим уравнение скоростной характеристики п = f (I a) двигателя:

Определив отсюда значение 1 а и подставив его в (10-7), получим уравнение механической характеристики п = f (M) двигателя:

которое определяет зависимость скорости вращения двигателя от развиваемого момента вращения.

Вид механической характеристики п = f (М) или М = f (n) при U = const зависит от того, как с изменением нагрузки или М изменяется поток машины Фе, и различен для двигателей с различными способами возбуждения. Это же справедливо и для скоростных характеристик (см. § 10-4 - 10-6).








§ 10-2. Пуск двигателей постоянного тока

При пуске двигателя в ход -необходимо: 1) обеспечить надлежащую величину пускового момента и условия для достижения необходимой скорости вращения; 2) предотвратить возникновение чрезмерного пускового тока, опасного для двигателя.

Возможны три способа пуска двигателя в ход: 1) прямой пуск, когда цепь якоря приключается непосредственно к сети на ее полное напряжение; 2) пуск с помощью пускового реостата или пусковых сопротивлений, включаемых последовательно в цепь якоря; 3) пуск при пониженном напряжении цепи якоря.

При п = 0 также Е а = 0 и, согласно выражению (10-5),

L=U a /R a . (10-10)

В нормальных машинах R a ^. - 0,02 -н 0,10, и поэтому при прямом пуске с U = U u ток якоря недопустимо велик:

/ в = (50ч-10)/ н.

Вследствие этого прямой пуск применяется только для двигателей мощностью до нескольких сотен ватт, у которых R a относительно велико и поэтому при пуске l a sg (4 ■*- 6) / н, а процесс пуска длится не более 1-2 сек.

Самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений (рис. 10-2).

При этом вместо выражения (10-5) имеем

где R n - сопротивление пускового реостата, или пусковое сопротивление. Величина R n подбирается так, чтобы в начальный момент пуска было 1 а = (1,4 -г- 1,7) / н (в малых машинах до (2,0 4- 2,5) / н).

Рассмотрим подробнее пуск двигателя параллельного возбуждения с помощью реостата (рис. 10-2, а).

Перед пуском (t <; 0) подвижный контакт П пускового реостата стоит на холостом контакте 0 и цепь двигателя разомкнута. В начальный момент пуска (t = 0) подвижный контакт Я с помощью рукоятки переводится на контакт /, и через якорь пойдет ток / а, определяемый равенством (10-12). Цепь обмотки возбуждения ОВ подключается к неподвижной контактной дуге д, по которой скользит



контакт Я, чтобы во время пуска цепь возбуждения все время была под полным напряжением. Это необходимо для того, чтобы i B и Фв при пуске были максимальными и постоянными, так как при этом, согласно выражению (10-8), при данных значениях 1 а развивается



Рис 10-2 Схема пуска двигателя параллельного возбуждения с помощью пускового реостата (а) и пусковых сопротивлений (б)

наибольший момент М. С этой же целью регулировочный реостат возбуждения ставится при пуске в положение R p в = 0.

При положении контакта Я пускового реостата на контакте / (t = 0) возникают токи 1 а и i B , а также момент М, и если М > М ст, то двигатель придет во вращение и скорость п будет расти со значения п - 0 (рис. 10-3). При этом в якоре будет индуктироваться э. д. с. Ег^п и, согласно выражениям (10-1J) и (10-8), 1 а и М, а также скорость нарастания п будут уменьшаться. Изменение этих величин" при М ст = const происходит по экспоненциальному закону.

Когда 1 а достигнет значения Л» мин = (Ы -*■ 1,3) / н, контакт Я пускового реостата переведется на контакт 2. Вследствие уменьшения R n ток 1 а ввиду малой индуктивности цепи якоря почти мгновенно возрастет, М также увеличится, п будет расти быстрее и в результате увеличения Е а величины 1 а и М снова будут уменьшаться (рис. 10-3). Подобным же образом развивается процесс пуска при последовательном переключении реостата в положения 3, 4 и 5, после чего двигатель достигает установившегося режима работы со значениями / о и п, определяемыми условиями М=М„ [см. равенства (10-7) и (10-8)].

Рис 10-3 Зависимость 1 ф М и п от времени при пуске двигателя

При пуске на холостом ходу М„ = М о. Ток 1 а - 1 а0 в этом случае мал и составляет обычно 3-8% от / н.

Заштрихованные на рис. 10-3 ординаты представляют собой, согласно выражению (10-2), значения избыточного, или динамического, момента

под воздействием которого происходит увеличение п.

Количество ступеней пускового реостата и величины их сопротивлений рассчитываются таким образом, чтобы при надлежащих интервалах времени переключения ступеней максимальные и минимальные значения 1 а на всех ступенях получились одинаковыми. По условиям нагрева ступени реостата рассчитываются на кратковременную работу под током.

Остановка двигателя производится путем его отключения от сети с помощью рубильника или другого выключателя. Схема рис. 10-2 составлена так, чтобы при отключении двигателя цепь обмотки возбуждения не размыкалась, а оставалась замкнутой через якорь. При этом ток в обмотке возбуждения после отключения двигателя уменьшается до нуля не мгновенно, а с достаточно большой постоянной времени. Благодаря этому предотвращается индуктирование в обмотке возбуждения большой э. д. с. самоиндукции, которая может повредить изоляцию этой обмотки.

Применяются также несколько видоизмененные по сравнению с рис. 10-2, а схемы пусковых реостатов, без контактной дуги д. Конец цепи возбуждения при этом можно присоединить, например, к контакту 2, и при работе двигателя последовательно с обмоткой возбуждения будут включены последние ступени пускового реостата. Поскольку их сопротивление по сравнению с R B = r B + R p B мало, то это не оказывает большого влияния на работу двигателя.

Автоматизировать переключение пускового реостата неудобно. Поэтому в автоматизированных установках вместо пускового реостата используют пусковые сопротивления (рис. 10-2, б), которые поочередно шунтируются контактами Kl, К2, КЗ автоматически работающих контакторов. Для упрощения схемы и уменьшения количества аппаратов число ступеней принимается минимальным (у двигателей малой мощности обычно 1-2 ступени).

Ни в коем случае нельзя допускать разрыва цепи параллельного возбуждения.

В этом случае поток возбуждения исчезает не сразу, а поддерживается индуктируемыми в ярме вихревыми токами. Однако этот поток будет быстро уменьшаться и скорость п, согласно выражению (10-7), будет сильно увеличиваться («разнос» двигателя). ° результате ток якоря значительно возрастет и возникнет круговой

огонь, вследствие чего возможно повреждение машины, и поэтому, в частности, в цепях возбуждения не ставят предохранителей и выключателей.

Ограничение пускового тока достигается также в случае питания цепи якоря при пуске от отдельного источника тока с регулируемым напряжением (отдельный генератор постоянного тока, управляемый выпрямитель). Параллельную обмотку возбуждения при этом необходимо питать от другого источника, с полным напряжением, чтобы иметь при пуске полный ток г в. Этот способ пуска применяют чаще всего для мощных двигателей, притом в сочетании с регулированием скорости вращения (см. § 10-4).

Пуск двигателей последовательного и смешанного возбуждения производится аналогичным образом. Схема пуска двигателя смешанного возбуждения ничем не отличается -от схемы пуска двигателя параллельного возбуждения (рис. 10-2), а схема пуска двигателя последовательного возбуждения упрощается за счет исключения параллельной цепи возбуждения.

Для изменения направления вращения (реверсирования) двигателя необходимо изменить направление тока в якоре (вместе с добавочными полюсами и компенсационной обмоткой) или в обмотке (обмотках) возбуждения.

§ 10-3. Регулирование скорости вращения и устойчивость работы двигателя

Способы регулирования скорости вращения двигателей постоян ного тока следуют из соотношений" (10-7) и (10-9). Возможны три способа регулирования скорости вращения.

1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока Ф 6 , т. е. тока возбуждения t B .

С уменьшением Фа, согласно выражению (10-7), скорость возрастает. Двигатели рассчитываются для работы при номинальном режиме с наибольшим значением Фе, т. е. с наименьшей величиной п. Поэтому практически можно только уменьшать Ф^.

Следовательно, рассматриваемый способ позволяет регулировать скорость вверх от номинальной. При таком регулировании к. п. д. двигателя остается высоким, так как мощность возбуждения мала, в частности мала мощность реостатов для регулирования тока возбуждения. К тому же при уменьшении i B мощность возбуждения Ш в уменьшается.

Верхний предел регулирования скорости вращения ограничивается механической прочностью машины и условиями ее коммутации.

При высоких скоростях коммутация ухудшается вследствие увеличения вибрации щеточного аппарата, неустойчивости щеточного контакта и возрастания реактивной э. д. с, а также вследствие увеличения максимального напряжения между коллекторными пластинами в результате ослабления основного поля и усиления при этом искажающего влияния поперечной реакции якоря (см. § 5-3).

Для увеличения диапазона регулирования п посредством ослабления поля в машинах малой и средней мощности с волновой обмоткой якоря иногда применяют раздельное питание катушек возбуждения отдельных полюсов. При этом в одной группе полюсов сохраняют i B = const и большой поток со значительным насыщением участков магнитной цепи, а в другой группе полюсов t B и поток уменьшают. Искажающее влияние поперечной реакции якоря под первой группой полюсов в этом случае будет проявляться значительно слабее. Так как в волновой обмотке напряжение между соседними коллекторными пластинами складывается из э. д. с. р секций, расположенных под всеми полюсами (см. § 3-5), то в результате такого регулирования потока полюсов распределение напряжения между пластинами будет более равномерным.

2. Другой способ регулирования скорости заключается во включении последовательно в цепь якоря реостата или регулируемого сопротивления R pa ,

Вместо выражения (10-7) при этом имеем



т. е. в реостате будет теряться 47,5% приложенного напряжения и столько же мощности, подводимой к цепи якоря. По этой причине

данный способ применяется в основном для двигателей небольшой мощности, а для более мощных двигателей используется редко и только кратковременно (пуско-наладочные режимы и т. д.).

3. Регулирование скорости осуществляется также путем регулирования напряжения цепи якоря. Так как работа двигателя при U > U H недопустима, то данный способ, согласно выражениям (10-7) и (10-9), дает возможность регулировать скорость также вниз от номинальной. К. п. д. двигателя при этом остается высоким, так как никаких добавочных, источников потерь в схему двигателя не вносится.

Однако в этом случае необходим отдельный источник тока с регулируемым напряжением, что удорожает установку.

Отметим, что регулирование скорости путем изменения 1 а невозможно, хотя такая возможность на первый взгляд вытекает" из равенства.(10-7). Дело в том, что, согласно равенству (10-3), двигатель при каждой скорости вращения должен развивать определенный момент М, равный моменту сопротивления приводимого механизма М„ при данном значении п. Но при этом в соответствии с выражением (10-8) при данном значении Ф 6 величина 1 а в двигателе будет при каждом значении М тоже вполне определенной.

Различные способы регулирования п более конкретно, применительно к двигателям с различными способами возбуждения; рассматриваются в последующих параграфах.

Условия устойчивости работы двигателя. При работе двигателя всегда возникают определенные возмущения режима работы (кратковременные колебания напряжения сети, случайные кратковременные изменения момента нагрузки на валу и т. д.). Такие возмущения чаще всего бывают небольшими и кратковременными, однако при этом происходят, хотя также небольшие и кратковременные, нарушения равенства моментов установившегося режима работы [см. выражение (10-3)], вследствие чего возникает момент М юв и изменяется скорость вращения.

Под устойчивостью работы двигателя понимается его способность вернуться к исходному, установившемуся режиму работы при малых возмущениях его работы, когда действие этих возмущений прекратится. Иными словами, работа двигателя называется устойчивой, если бесконечно малые в пределе возмущения его работы вызывают лишь столь же малые изменения величин, характеризующих режим его работы (например, скорость вращения, ток якоря и т. д.). Двигатель неустойчив в работе, если подобные малые возмущения приводят к большим изменениям режима работы. При неустойчивой работе небольшие кратковременные возмущения вызывают либо непрерывное изменение

режима (п, I a и т. д.) в каком-либо одном направлении, либо приводят к колебательному режиму работы с возрастанием амплитуд колебаний п, 1 а и т. д. Естественно, что в условиях эксплуатации необходимо обеспечить устойчивый режим работы двигателя. При неустойчивости двигателя нормальная его работа невозможна, и обычно происходит авария.

Неустойчивая работа возможна также и у генераторов. В § 9-7 была рассмотрена неустойчивость параллельной работы генераторов смешанного возбуждения при отсутствии уравнительного провода. Режим самовозбуждения генераторов постоянного тока (см. § 9-4) также в сущности представляет собой неустойчивый режим работы, так как i B и U непрерывно изменяются. Работа генератора параллельного возбуждения при R s = R B . Kp также неустойчива, так как если несколько изменить величину R B , то напряжение U значительно изменится, т. е. возрастет до некоторой конечной величины или упадет почти до нуля.

Устойчивость работы двигателя зависит от вида его механической характеристики М = f{n) и от вида зависимости момента сопротивления на валу от скорости вращения М ст = /(«) Вид последней зависимости определяется свойствами рабочей машины, приводимой в движение двигателем. Например, у металлорежущих станков, если установка резца не изменяется, М„ да const, т. е. М ст не зависит от скорости вращения, а у вентиляторов и насосов М„ ~ п 2 .

На рис. 10-4, а я б изображены два характерных случая работы двигателя. Установившемуся режиму работы = М„) со скоростью вращения п 0 соответствует точка пересечения указанных двух характеристик.

Если зависимости М = f (п) и М ст = / (п) имеют вид, изображенный на рис. 10-4, а, то при случайном увеличении п в результате возмущения на An тормозящий момент М сг станет больше движущего М (М ст > М) и поэтому двигатель будет затормаживаться, что заставит ротор вернуться к исходной скорости п 0 . Точно так же, если в результате возмущения скорость двигателя уменьшится на An, то будет М„ < М, поэтому ротор станет ускоряться и снова будет п = п 0 . Таким образом, в рассматриваемом

Рис. 10-4. Устойчивый (а) и неустойчивый (б) режимы работы двигателя

случае работа устойчива. Как следует из рис. 10-4, а, в этом случае

что и является признаком, или критерием, устойчивости работы двигателя.

При зависимостях М = f (п) и М ст = / (п) вида рис. 10-4, б работа неустойчива. Действительно, при увеличении п от п = п 0 до п = п 0 + An будет М > М ст, возникнет избыток движущего момента, скорость п начнет нарастать, причем избыточный момент М - УИ СТ увеличится еще больше, п еще возрастет и т. д. Если в результате возмущения п = п 0 - An, то М< М сг и п будет непрерывно уменьшаться. Поэтому работа в точке М = М ст и п = п 0 невозможна. Как следует из рис. 10-4, б, в этом случае

что является признаком неустойчивости работы двигателя.

Из изложенного следует, что двигатель с данной механической характеристикой М = f (n) может работать устойчиво или неустойчиво в зависимости от характеристики М ст = / (п) рабочей машины. Возникновение неустойчивости наиболее вероятно при такой механической характеристике двигателя М = f (п) или п = f (M), когда Мига увеличиваются или уменьшаются одновременно (рис. 10-4, б). В частности, в этом случае работа неустойчива при Мст = /(«)= const (например, металлорежущие станки). Поэтому двигателей с такими механическими характеристиками не строят.

Изложенное здесь в равной мере относится к устойчивости двигателей как постоянного, так и переменного тока, а также любых видов двигателей.

Изменение режима работы. Двигатели постоянного тока, как, впрочем, и двигатели переменного тока, обладают при соблюдении условий устойчивости замечательной способностью автоматически, без внешнего регулирующего воздействия, приспосабливаться-к изменившимся условиям работы. В этом смысле можно сказать, что электрические двигатели обладают свойством саморегулирования. Проиллюстрируем сказанное на примере двигателя параллельного возбуждения.

Допустим, что такой двигатель работает при U = const, i e = = const и, следовательно, Фв « const и нагрузочный момент М„, развиваемый рабочей машиной, увеличивается. Тогда М < M zr , возникает М тн < 0 [см. выражение (10-2)] и п начинает умень-

шаться. Но при этом будет уменьшаться также Е а, ток 1 а [см. выражение (10-5)] и момент М Гсм. выражение (10-8)] начнут увеличиваться, причем это будет происходить до тех пор, пока снова не наступит равновесие моментов М = М„. Аналогичным образом изменяется также режим, если М„ уменьшится, причем в этом случае я и Е а начнут увеличиваться, а 1 а и М - уменьшаться до тех пор, пока снова будет М = М ст и М тш = 0.

Допустим теперь, что с помощью реостата R p в (см. рис. 10-2) произведено уменьшение i B . При этом Фв будет уменьшаться, однако вследствие механической инерции ротора скорость п в первый момент не изменится. Тогда, согласно выражению (10-6), Е а уменьшится, а вследствие этого 1 а и М возрастут [см. выражения (10-5) и (10-8)1. При этом будет М > М„, в соответствии с равенством (Ю-2) Мдин > 0, и скорость п начнет увеличиваться. Это вызовет, согласно тем же соотношениям, увеличение Е а и уменьшение 1 а и М до тех пор, пока снова не наступит равновесие моментов М = = М„ и М дин = 0 (рис. 10-5). При увеличении i B явления развиваются в обратном направлении. Необходимо отметить, что резких изменений i B при регулировании допускать нельзя, так как U и Е а [см. выражение(10-5)] являются близкими величинами и небольшое изменение Фв и Е а ведет к большим изменениям / а и М.

Аналогичным образом происходит переход к новому режиму при изменении других внешних условий (например, введение сопротивления в цепь якоря и т. д.), а также в двигателях с другими способами возбуждения.

Из изложенного следует, что поведение двигателя при установившемся режиме работы и переходах к новому режиму работы всецело определяется уравнениями равновесия моментов (10-2) и напряжения цепи якоря (10-4).

§ 10-4. Двигатели параллельного возбуждения

Естественные скоростная и механическая характеристики. Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.

Скоростная и механическая характеристики двигателя определяются равенствами (10-7) и (10-9) при U = const и i B = const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными.

Рис. 10-5. Переход двигателя

параллельного возбуждения

к новому режиму работы при

уменьшении потока

Если щетки находятся на геометрической нейтрали, при увеличении 1 а поток Фв несколько уменьшится вследствие действия поперечной реакции якоря. В результате этого скорость п, согласно выражению (10-7), будет стремиться возрасти. С другой стороны, падение напряжения R a I a вызывает уменьшение скорости. Таким образом, возможны три вида скоростной характеристики, изображенные на рис. 10-6; 1 - при преобладании влияния RJ a \ 2 - при взаимной компенсации влияния RJ a и уменьшения Ф 6 ; 3 - при преобладании влияния уменьшения Фа.

Ввиду того что изменение Ф в относительно мало, механические характеристики п = f (M) двигателя параллельного возбуждения,

определяемые равенством (10-9), при U = const и г в = const совпадают по виду с характеристиками п = f (I a) (рис. 10-6). По этой же причине эти характеристики практически прямолинейны.

Характеристики вида 3 (рис. 10-6) неприемлемы по условиям устойчивости работы (см. § 10-3). Поэтому двигатели параллельного возбуждения изготовляются со слегка падающими характеристиками вида / (рис. 10-6). В современных высокриспользованных машинах ввиду довольно сильного насыщения зубцов якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида / (рис. 10-6) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, н. с. которой составляет до 10% от н. с. параллельной обмотки возбуждения. При этом уменьшение Фв под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей, а двигатель с такой обмоткой по-прежнему называется двигателем параллельного возбуждения.

Изменение скорости вращения An (рис. 10-6) при переходе от холостого хода (/„ = 1 а0) к номинальной нагрузке (1 а - 1 аи) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2-8% от п н. Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и пр.).

Рис. 10-6. Виды естественных скоростных и механических характеристик двигателя параллельного возбуждения

Регулирование скорости посредством ослабления магнитного потока производится обычно с помощью реостата в цепи возбуждения /? р в (см. рис. 9-1, б; 10-2). При отсутствии добавочного сопротивления в цепи якоря (R pa = 0) и U = const характеристики п - \ (1 а) и п = / (М), определяемые равенствами (10-7) и (10-9), для разных значений R ps , i B или Фа имеют вид, показанный да рис. 10-7. Все характеристики п = f (I a) сходятся на оси абсцисс (п = 0) в общей точке при весьма большом токе 1 а, который, согласно выражению (10-5), равен

Рис. 10-7. Механические и скоростные характеристики двигателя параллельного возбуждения при разных потоках возбуждения

Ia=U/R a .

Однако механические характеристики пересекают ось абсцисс в разных точках.

Нижняя характеристика на рис. 10-7 соответствует номинальному потоку. Значения п при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой М ст = f (п) для рабочей машины, соединенной с двигателем (штриховая ли«ия на рис. 10-7).

Точка холостого хода двигателя = М о, 1 а = / а0) лежит несколько правее оси ординат на рис. 10-7. С увеличением скорости вращения п вследствие увеличения механических потерь М о и 1 а0 также увеличиваются. Если в этом режиме с помощью приложенного.извне момента вращения начать увеличивать скорость вращения п, то Е а [см. выражение (10-6)] будет увеличиваться, а 1 а и М будут, согласно равенствам (10-5) и (10-8), уменьшаться. При 1 а = 0 и М = 0 механические и магнитные потери двигателя покрываются за счет подводимой к валу мехнической мощности, а при дальнейшем увеличении скорости / о и М изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рис. 10-7 левее оси ординат).

Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1: 2, Изготовляются также двигатели с регулированием скорости таким способом в пределах до 1: 5 или даже 1: 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами (см. § 5-3) необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов (см. § 10-3) или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.

Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики. Если последовательно в цепь якоря включить добавочное сопротивление R pa (рис. 10-8, а), то вместо выражений (10-7) и (10-9) получим

Сопротивление R pa может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.



Рис. 10-8. Схема регулирования скорости вращения двигателя параллельного возбуждения с помощью сопротивления в цепи якоря (а) и соответствующие механические и скоростные характеристики (б)

Характеристики п - f (М) и п = f (I a) для различных значений /? рг = const при U - const и i B = const изображены на рис. 10-8, б (Rpai < Rpaz < ^ р оз)- Верхняя характеристика (R pa = 0) является естественной. Каждая из характеристик пересекает ось абсцисс (п - 0) в точке с

Продолжения этих характеристик под осью абсцисс на рис. 10-8 соответствуют торможению двигателя противовключением. В этом случае п < 0, э. д. с. Е а имеет противоположный знак и складывается с-напряжением сети U, вследствие чего

а момент двигателя М действует против направления вращения и является поэтому тормозящим.

Если в режиме холостого хода (1 а = 1 п0) с помощью приложенного извне момента вращения начать увеличивать скорость враще-ьия, то сначала достигается режим 1 а = 0, а затем 1 а изменит направление и машина перейдет в режим генератора (участки характеристик на рис. 10-8, б слева от оси ординат).

Как видно из рис. 10-8, б, при включении R pa характеристики становятся менее жесткими, а при больших величинах R pa - круто падающими, или мягкими.

Если кривая момента сопротивления М ст = / (п) имеет вид, изображенный на рис. 10-8, б штриховой линией, то значения п при установившемся режиме работы для каждого значения R pa

Рис 10-9 Схема агрегата «генератор-двигатель» для регулирования скорости двигателя независимого возбуждения

определяются точками пересечения соответствующих кривых. Чем больше R pa , тем меньше п и ниже к. п. д.

Регулирование скорости посредством изменения напряжения якоря может осуществляться с помощью агрегата «генератор-двигатель» (Г - Д), называемого также агрегатом Леонарда (рис. 10-9). В этом случае первичный двигатель ПД (переменного тока, внутреннего сгорания и т. п.) вращает с постоянной скоростью генератор постоянного тока Г. Якорь генератора непосредственно приключен к якорю двигателя постоя"нного тока Д, который служит приводом рабочей машины РМ. Обмотки возбуждения генератора ОВГ и двигателя ОВД питаются от независимого источника - сети постоянного тока (рис. 10-9) или от возбудителей (небольших генераторов постоянного тока) на валу первичного двигателя ПД. Регулирование тока возбуждения генератора t B г должно производиться практически от нуля (на рис. 10-9 с помощью реостата, включенного по потенциометрической схеме). При необходимости реверсирования двигателя надо изменить полярность генератора (на рис. 10-9 с помощью переключателя Я).

Пуск двигателя Д и регулирование его скорости осуществляют следующим образом. При максимальном г в д и г в г = 0 производят пуск первичного двигателя ПД. Затем плавно увеличивают i g г, и при небольшом напряжении генератора U двигатель Д придет во вращение. Регулируя, далее, U в пределах до U =* U H , можно получить Любые скорости вращения двигателя до п = и н. Дальнейшее увеличение п возможно путем уменьшения t B д. Для реверсирования двигателя уменьшают t B г до нуля, переключают ОВГ и снова увеличивают i B т от значения i B r = 0.

Когда рабочая машина создает резко пульсирующую нагрузку (например, некоторые прокатные станы) и нежелательно, чтобы пики нагрузки полностью передавались первичному двигателю или в сеть переменного тока, двигатель Д можно снабдить маховиком (агрегат Г-Д-М, или агрегат Леонарда - Ильгнера). В этом случае при понижении п во время пика нагрузки часть этой нагрузки покрывается за счет кинетической энергии маховика. Эффективность действия маховика будет больше при более мягкой характеристике двигателя ПД или Д.

В последнее время все чаще двигатель ПД и генератор Г заме-г няют ртутным или полупроводниковым выпрямителем с регулируемы!* напряжением. В этом случае рассматриваемый агрегат называют также вентильным (ионным, тиристорным)" п р и в о д о м.

Рассмотренные агрегаты используются при необходимости регулирования скорости вращения двигателя с высоким к. п. д. в широких пределах - до 1: 10 й более (крупные металлорежущие станки, прокатные станы и т. д.).

Отметим, что изменение U с целью регулирования п по схеме рис. 9-1, 0> и 10-8, а не дает желаемых результатов, так как одновременно с изменением напряжения цепи якоря изменяется пропорционально U также ток возбуждения. Так как регулирование V можно производить только от значения U - U K вниз, то вскоре магнитная цепь окажется ненасыщенной, вследствие чего U и t e будут изменяться пропорционально друг другу. Согласно равеяству (10-7), п при этом существенным образом не меняется.

В последнее время все больше распространяется так называемое импульсное регулирова н,.и е двигателей постоянного" зша. При этом цепь якоря двигателя питается от источника па-стйЯнного тока с постоянным напряжением через тиристоры, которые, периодически, с частотой 1000-ЗШО гц включаются" и отключаются. Чтобы сгладить пр» этом кривую тока якоря, на его зажимах подключаются конденсаторы. Напряжение на зажимах-якоря в этом случае практически постоянно и пропорционально отношению времени включения тиристоров ко времени-продолжи-тельдасти всего цикла. Таким образом, импульсный метод позво-

ляет регулировать скорость вращения даигателя при его питании от источника с постоянным напряжением в широких пределах без реостата в цепи якоря и практически без дополнительных потерь. Таким же образом, без пускового реостата и без дополнительных потерь, может производиться пуск двигателя.

Импульсный способ регулирования в экономическом отношении весьма выгоден для управления двигателями, работающими в режимах переменной скорости вращения с частыми пусками, например на электрифицированном транспорте.

Рабочие характеристики представляют собой зависимости потребляемой мощности Р ъ < потребляемого тока /, скорости п, момента М и к. п. д. т] от полезной мощности Р 2 при U = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой

Рис. 10-10. Рабочие характеристики

двигателя параллельного возбуждения

Р а = 10 кет, U H = 220 в, « н =

950 об/мин

мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рис. 10-10.

Одновременно с увеличением мощности на валу Р 2 растет и момент на валу М. Поскольку с увеличением Р % и М скорость п несколько уменьшается, то М = Р 2 /п растет несколько быстрее Р 2 . Увеличение Р 2 и М, естественно, сопровождается увеличением тока двигателя /. Пропорционально / растет также потребляемая из сети мощность Р г. При холостом ходе (Р 2 = 0) к. п. д. ц = 0, затем с увеличением Р 2 сначала ц быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоря г\ снова начинает уменьшаться.

§ 10-5. Двигатели последовательного возбуждения

Естественные скоростная и механическая характеристики, об ласть применения. В двигателях последовательного возбуждения ток якоря одновременно является также током возбуждения: г в = 1 а = /■ Поэтому поток Фа изменяется в широких пределах и можно написать, что

Ф 6 = £ф/. (10-18)

Коэффициент пропорциональности &ф в значительном диапазоне нагрузок, при / < / н, является практически постоянным, и лишь

при / > (0,8 н- 0,9) / н вследствие насыщения магнитной цепи кф начинает несколько уменьшаться.

При использовании соотношения (10-18) для двигателя последовательного возбуждения вместо выражений (10-7), (10-9) и (10-8) получим

Скоростная характеристика двигателя [см. выражение (10-19)), представленная на рис. 10-11, является мягкой и имеет гиперболический характер. При & ф = const вид кривой п - f (/) показан штриховой линией. При малых / скорость двигателя становится недопустимо большой. Поэтому работа двигателей последовательного возбуждения, за исключением самых маленьких, на холостом ходу не допускается, а использование ременной передачи неприемлемо. Обычно минимально допустимая нагрузка Р 2 = = (0,2 -f- 0,25)Р н.

Естественная механическая характеристика двигателя последовательного возбуждения п = / (М) в соответствии с соотношением (10-20) показана на рис. 10-13 (кривая 1).

Поскольку у двигателей параллельного возбуждения М ^ /, а у двигателей последовательного возбуждения приблизительно М~/ ! и при пуске допускается / = (1,5 -г- 2,0) / н, то двигатели последовательного возбуждения развивают значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения. Кроме того, у двигателей параллельного возбуждения п яа const, а у двигателей последовательного возбуждения, согласно выражениям (10-19) и (10-20), приблизительно (при R a = 0)

Рис 10-11. Естественная скоростная характеристика двигателя последовательного возбуждения





а у двигателей последовательного возбуждения

Р 2 = 2ппМ~ VM.

Таким образом, у двигателей последовательного возбуждения при изменении момента нагрузки М ст = М в широких пределах мощность изменяется в меньших пределах, чем у двигателей параллельного возбуждения.

Поэтому для двигателей последовательного возбуждения менее опасны перегрузки по моменту. В связи с этим двигатели последовательного возбуждения имеют существенные преимущества в случае тяжелых условий пуска и изменения момента нагрузки в широких пределах. Они широко применяются для электрической тяги (трамвай, метро, троллейбусы, электровозы и тепловозы на железных дорогах) и в подъемно-транспортных установках.

Ruin ^ша Рис. 10-12. Схемы регулирования скоро-

Отметим, что при повышении скорости вращения двигатель последовательного возбуждения в режим генератора не переходит. На рис. 10-11 это отражено в том, что характеристика п - f (/) оси ординат не пересекает. Физически это объясняется тем, что при переходе в режим генератора, при заданном направлении вращения и заданной полярности напряжения, направление тока должно изменяться на обратное, а направление э. д. с. Е а и полярность полюсов должны сохраняться неизменными, однако последнее при изменении направления тока в обмотке возбуждения невозможно. Поэтому Для перевода двигателя последовательного возбуждения в режим генератора необходимо переключить концы обмотки возбуждения.

Регулирование скорости посредством ослабления поля. Регули рование п посредством ослабления поля производится либо путем шунтирования обмотки возбуждения некоторым сопротивлением ^ш.в (рис. 10-12, а), либо уменьшением числа включенных в работу витков обмотки возбуждения. В последнем случае должны быть предусмотрены соответствующие выводы из обмотки возбуждения.

Так как сопротивление обмотки возбуждения 7? в и падение напряжения на нем малы, то # ш- в также должно быть мало. Потери

в сопротивлении R m B поэтому тоже малы, а суммарные потери на возбуждение при шунтировании даже уменьшаются. Вследствие этого к. п. д. двигателя остается высоким, и такой способ регулирования широко применяется на практике.

При шунтировании обмотки возбуждения ток возбуждения с величины / уменьшается до

и скорость п соответственно увеличивается. Выражения для скоростной и механических характеристик при этом получим, если

в равенствах (10-19) ~ и (10-20) заменим k& на kk 0 B , где

представляет собой коэффициент ослабления возбуждения. При регулировании скорости изменением числа витков обмотки возбуждения

Ряс. 40-13. Механические характеристик» двигателя последовательного возбуждения при разных способах регулирования скорости вращения

На рис. 10-13 показаны (кривые /, 2, 3) характеристики я = / (М) для этого случая р&< гулирования скорости при нескольких значениях & ов (значению k 0 в = 1 соответствует есте* ственна"я характеристика /, kp r , =*= 0,6 - кривая 2 и & о.. я = 0,3 - кривая 5). Характеристики д£йьг в относительных единицах и соответствуют случаю, когда кф » const и R a x =0,1.

Регулирование скорости путем шунтирования якоря. При шун*и-ровании якоря (рис. 10-12, б) ток и поток возбуждения возрастают, а «скорость уменьшается. Так как падение иааряжеййя R^f майо Я поэтому можно принять- R B « 0, то сопротивление R^ a щшт* чест находится под полным напряжением сети, еги ведший^" долина быть значительной, потери в нем оудут велики и к,*й. д. сильно уменьшится.

Йроме того, шунтирование якоря эффективно только трр|й» когда магнитная цепь не насыщена. В связи с этим шунтирование якоря на практике используется редко.

На рис. 10-13 кривая 4 n = f(M) при

Рис. 10-14. Параллельное и последовательное включение двигателей последовательного возбуждения для изменения скорости вращения

Регулирование скорости включением сопротивления в цепь якоря

(рис. 10-12, в). Этот способ позволяет регулировать п вниз от номинального значения. Так как одновременно при этом значительно уменьшается к. п. д., то такой способ регулирования находит ограниченное лриме-нение.

Выражения для скоростной и механической характеристик в этом случае получим, если в равенствах (10-20) и (10-21) заменим R a на Ra + Rpa- Характеристика п = f (M) для такого способа регулирования скорости при R P a* = 0,5 изображена на рис. 10-13 в виде кривой 5.

Регулирование скорости изменением напряжения. Этим способом можно регулировать п вниз от номинального значения с сохранением высокого к. п. д. Рассматриваемый способ регулирования широко применяется в транспортных установках, где на каждой ведущей оси устанавливается отдельный двигатель и регулирование осуществляется путем переключения двигателей с параллельного включения в сеть на последовательное (рис. 10-14). На рис. 10-13 кривая 6 представляет собой характеристику п = / (М) для этого случая при U = 0,5 U n .

§ 10-6. Двигатели смешанного возбуждения

При встречном включении последовательной обмотки возбуждения двигателя смешанного возбуждения поток Ф в с увеличением нагрузки будет уменьшаться. Вследствие этого характеристики п ~ f (I) и п = / (М) будут иметь характер кривой 3 на рис. 10-6. Так как работа при этом обычно неустойчива, то двигатели с встречным включением последовательной обмотки возбуждения не применяются.

При согласном включении последовательной обмотки возбуждения поток Фб с увеличением нагрузки возрастает. Поэтому такой Двигатель смешанного возбуждения имеет более мягкую механическую характеристику по сравнению с двигателем параллельного

возбуждения, но более жесткую по сравнению с двигателем последовательного возбуждения (рис. 10-15). В зависимости от назначения двигателя доля последовательной обмотки в создании полной н. с. возбуждения может меняться в широких пределах.

Скорость вращения двигателей смешанного возбуждения обычно регулируется так же, как и в двигателях параллельного возбуждения, хотя в принципе можно использовать также способы, применяемые в двигателях последовательного возбуждения.

Двигатели смешанного возбуждения применяются в условиях, когда требуется большой пусковой момент, быстрое ускорение при пуске и допустимы значительные изменения скорости вращения при изменении нагрузки. Эти двигатели используются также в случаях, когда момент нагрузки изменяется в широких пределах, так как при этом мощность двигателя снижается, как и у двигателя с последовательным возбуждением. В связи с этим двигатели смешанного возбуждения применяются для привода на постоянном токе компрессоров, строгальных станков, печатных машин, прокатных станов, подъемников и т. д. В последнее время двигатели смешанного

возбуждения используются также для электрической тяги, так как при этом легче, чем в случае применения двигателей последовательного возбуждения, осуществляется торможение под* вижных составов с возвращением энергии в контактную сеть постоянного тока путем перевода машины в генераторный режим работы.

§ 10-7. Нормальные машины постоянного тока, изготовляемые электромашиностроительными заводами СССР

Народное хозяйство СССР предъявляет большой спрос на генераторы и двигатели постоянного тока нормальной конструкции, рассмотренные в предыдущей и настоящей главах. Больше всего требуется машин малой мощности (до 20-30 кет). Такие машины изготовляются по способу массового или поточного производства. Более мощные машины выпускаются крупносерийно или мелко» серийно. Самые крупные машины, мощностью в тысячи киловатт, изготовляются обычно способом индивидуального производства, т. е. каждая машина с определенными техническими данными выпускается в небольшом количестве.

Рис. 10-15. Естественные механические характеристики двигателей параллельного (1), последовательного (2) и смешанного возбуждения с согласным включением последовательной обмотки (3)

Машины массового и серийного производства проектируются в виде серий, охватывающих определенный диапазон мощностей, скоростей вращения и напряжений. Машины данной серии характеризуются общностью конструктивных решений, технологии производства, применяемых материалов и т. д. В пределах серии стремятся к возможно более широкой унификации узлов и деталей машин. Это позволяет повысить производительность труда и удешевить производство машин. Кроме основного исполнения машин, в данной серии могут предусматриваться также определенные модификации: по степени защиты от воздействия внешней среды (см. § 8-5), по способу крепления машин (на лапах, фланцевые) и т. д. Отдельным заводам обычно поручают изготовление машин определенных участков серии. Время от времени, по мере совершенствования способов производства, появления материалов повышенного качества, возникновения новых потребностей народного хозяйства, производится усовершенствование или модернизация данной серии машин либо разрабатывается новая серия машин с повышенными технико-экономическими показателями, заменяющая старую.

В настоящее время электромашиностроительные заводы СССР изготовляют машины постоянного тока ряда серий. Основной из них является единая серия нормальных машин постоянного тока, имеющая обозначение П и заменившая ря"д более узких старых серий машин.

Основная часть серии П охватывает генераторы и двигатели с номинальной мощностью 0,3-200 mm при п = 1500 об/мин. При других скоростях вращения номинальные мощности машин соответственно изменяются. Эта часть серии разбита на 11 габаритов (размеров). Машины каждого габарита имеют определенный диаметр якоря D ay а именно:

Номер габарита

D a , мм

Каждый габарит включает в себя машины с двумя различными Длинами сердечника якоря. Это позволяет использовать технологическую оснастку данного габарита (штампы якоря и полюсов и пр.) и различные детали (щиты, подшипниковые узлы и пр.) для изготовления машин разной мощности при одинаковой скорости вращения. Тип П81, например, обозначает машину серии П, 8-го габарита, с более коротким якорем, а П82 - с более длинным я корем.

Основное исполнение машины серии П одиннадцати габаритов - брызгозащищенное. Предусмотрена также модификация с закрытым исполнением. Все машины изготовляются без компенсационной обмотки, двигатели имеют легкую последовательную стабилизирующую обмотку возбуждения, генераторы имеют смешанное возбуждение. Напряжение двигателей ПО или 220 в (верхний, более мощный участок серии, - только 220 в) Напряжение генераторов 115 или 230 в (верхний участок - только 230 в). Предусмотрено также изготовление генераторов для зарядки аккумуляторных батарей с С/ н = 136 в и 1/ н = 270 а, с регулированием напряжения в пределах 110-160 в и 220-320 в. Генераторы выпускаются с номинальными скоростями вращения 1450 и 2850 об/мин, а двигатели основного исполнения - с номинальными скоростями вращения (при полном возбуждении) 600, 750, 1000, 1500 и 3000 обfмин. Коллекторы машин 1-б-го габаритов выполняются на пластмассе.

Поскольку в каждом габарите имеются машины с двумя длинами сердечника якоря и машины одного габарита и одной длины изготовляются на ряд скоростей вращения, количество разновидностей машин получается достаточно большим.

Таблица IQ-t

Технические данные двигателей серии П брызгозащищенного исполнения на (/„ = 220 в и #„ = 1500 об]мин

■Р а, кет

Вес кг

Р № нет

Вес, ке

Все машины с дащщм условным обозначением (например, ГО2) имеют одинаковые размеры н изготовляются из одинаковых деталей {sa исключением обмоток). В табл, 1СМ для иллюстраций показа-телей серии приведены некоторое даиние по двигателям ей**= «= 1500 об/мин. Дйигатели тега Щ условного обозначение, йо с меньшей скоростью га н> имеют sieawpy» мощность Р$ и нескольку меньший к. п. д, а двигателя еКжльщей скоростью п^ ~* наоборот

Мощность и к. п. д. генераторов с п н = 1450 об/мин примерно такие же, как у двигателей сп н = 1500 об /мин.

Серия П (1 - 11-й габариты) имеет также модификацию двигателей с широкими диапазонами регулирования скорости вращения путем ослабления поля: 1: 2,25; 1: 3; 1: 4; 1: 6 и 1: 8. Номинальные (наименьшие для данного двигателя) скорости вращения при этом находятся в пределах 200-1500 об/мин. Максимальные скорости вращения составляют 3000-3450 об/мин.

Для двигателей с диапазонами регулирования скорости вращения 1: 6 и 1: 8 предусмотрено раздельное питание катушек обмотки возбуждения с целью независимого регулирования потоков отдельных полюсов (см. § 10-3).

Серия машин постоянного тока П включает в себя и более"мощные машины. Этот участок серии охватывает габариты от 12-го до 17-го; в каждом габарите также имеются две длины якоря. Двигатели этого участка изготовляются на {/„ = 220, 330, 440 и 660 в, на мощности от 55 mm при п я = 300 об/мин до 1400 кет при 1000 обIмин. Все двигатели имеют компенсационную обмотку и могут быть использованы для привода вентиляторов, насосов, мелких и средних прокатных станов и т. д. Изготовляются также генераторы каждого типоразмера.

Кроме серии П, имеется ряд других серий машин постоянного тока более специализированного назначения (металлургические, крановые, тяговые и пр.). В эксплуатации находится также много машин старых серий, изгртовление которых прекращено. В частности, до введения в производство серии П в течение многих лет выпускались машины серии ПН.

В настоящее время машины постоянного тока строятся обычно с напряжением на коллекторе не более £/ й = 1500 в (тяговые двигатели магистральных электровозов постоянного тока.) Однако чаще-всего машины постоянного тока выпускаются на напряжения до 750-900 в, так как с увеличением напряжения условия работы коллектора и щеток усложняются и машина удорожается.

Более мощные машины изготовляются также с большим номинальным напряжением, чтобы ограничить по возможности величину тока якоря. В некоторых случаях крупные машины выпускаются с двумя якорями на одном валу.

Выводы обмоток машины постоянного тока, согласно ГОСТ 183-66, обозначаются следующим образом: Я1-Я2-якорь, К1- К.2-компенсационная обмотка, Д1-Д2-обмотка добавочных полюсов, С1-С2 - последовательная (сериесная) обмотка возбуждения, Ш1 - Ш2 - параллельная (шунтовая) обмотка возбуждения.

Более подробные данные о сериях электрических машин приводятся в специальных каталогах.

Схема двигателя.

Схема двигателя параллельного возбуждения изображена на рис. 1.25. Обмотка якоря и обмотка возбуждения включены параллельно. В этой схеме: I – ток, потребляемый двигателем из сети, I я – ток якоря, I в – ток возбуждения. Из первого закона Кирхгофа следует, что I = I я + I в.

Естественная механическая характеристика. Естественная механическая характеристика описывается формулой (1.6).

При холостом ходе М = 0 и n х = U/С Е Ф.

Если Ф = const, то уравнение механической характеристики принимает вид:

n = n х b М, (1.8)

где b = R я /С Е Ф.

Из (1.8) следует, что механическая характеристика (рис. 1.26, прямая 1) – прямая с углом наклона a и угловым коэффициентом b. Так как у двигателей постоянного тока R я мало, то с увеличением нагрузки на валу частота вращения n изменяется незначительно – характеристики подобного типа называются «жесткими».

Ток, потребляемый двигателем из сети, практически растет пропорционально моменту нагрузки. Действительно, М » М эм = С м I я Ф, и так как у двигателя параллельного возбуждения Ф = const, то I я ~ М.

Регулирование частоты вращения.

Регулирование частоты вращения возможно из (1.6) тремя способами: изменением магнитного потока главных полюсов Ф, изменением сопротивления цепи якоря R я и изменением подводимого к цепи якоря напряжения U (изменение n за счет изменения момента нагрузки М в понятие регулирования не входит).

Регулирование n изменением магнитного потока Ф осуществляется с помощью регулировочного реостата R р. При увеличении сопротивления реостата ток возбуждения I в и магнитный поток главных полюсов Ф уменьшаются. Это приводит, во-первых, к увеличению частоты вращения холостого хода n х и, во-вторых, к увеличению коэффициента b, т.е. к увеличению угла наклона механической характеристики. Однако b остается небольшим и жесткость механических характеристик сохраняется. На рис. 1.28 помимо естественной характеристики 1, соответствующей максимальному магнитному потоку Ф, приведено семейство механических характеристик 2-4, снятых при уменьшенном магнитном потоке. Из характеристик следует, что изменением магнитного потока можно только увеличивать частоту вращения относительно естественной характеристики. Практически частоту вращения таким методом можно увеличивать не более чем в 2 раза, так как увеличение скорости приводит к ухудшению коммутации и даже механическим повреждениям машины.

Другой способ регулирования скорости связан с включением последовательно с якорем регулировочного реостата R я.р (пусковой реостат R п для этой цели непригоден, так как он рассчитан на кратковременный режим работы). Формула (1.6) при этом принимает вид:

n = ,

откуда следует, что скорость при холостом ходе при любом сопротивлении R я.р одинакова, а коэффициент b и, следовательно, наклон механических характеристик 5-7 увеличивается (рис. 1.26). Регулирование частоты вращения этим способом приводит к уменьшению частоты вращения относительно естественной характеристики. Кроме того, оно неэкономично, так как связано с большой мощностью потерь (R я.р I ) в регулировочном реостате, по которому протекает весь ток якоря.

Третий способ регулирования частоты вращения – безреостатное изменение подводимого к якорю напряжения. Он возможен только в случае, когда якорь двигателя питается от отдельного источника, напряжение которого можно регулировать. В качестве регулируемого источника применяются отдельные, специально предназначенные для данного двигателя генераторы или управляемые вентили (тиратроны, ртутные выпрямители, тиристоры). В первом случае образуется система машин, называемая системой Г-Д (генератор – двигатель), (рис. 1.27). Она применяется для плавного регулирования в широких пределах частоты вращения мощных двигателей постоянного тока и в системах автоматического управления. Система регулирования с управляемыми вентилями УВ (рис. 1.28) находит применение для регулирования частоты вращения двигателей меньшей мощности. Ее преимущество – большая экономичность.

Регулирование частоты вращения изменением U практически возможно только в сторону уменьшения, так как увеличение напряжения выше номинального недопустимо из-за резкого ухудшения коммутации. Из (1.9) следует, что при уменьшении напряжения уменьшается скорость холостого хода n х, а наклон механических характеристик 8-10 не изменяется (см. рис. 1.26), они остаются жесткими даже при низких напряжениях. Диапазон регулирования (n max /n min) таким способом 6:1-8:1. Он может быть значительно расширен при применении специальных схем с обратными связями.

Регулировочная характеристика.

Регулировочная характеристика n=f(I в) двигателя параллельного возбуждения изображена на рис. 1.29.

Ее характер определяется зависимостью (1.5), из которой следует, что частота вращения обратно пропорциональна магнитному потоку и, следовательно, току возбуждения I в. При токе возбуждения I в = 0, что может быть при обрыве цепи возбуждения, магнитный поток равен остаточному Ф ост и частота вращения становится настолько большой, что двигатель может механически разрушиться, – подобное явление называется разносом двигателя.

Физически явление разноса объясняется тем, что вращающий момент (1.2) при уменьшении магнитного потока, казалось бы, должен уменьшиться, однако ток якоря I я = (U – E)/R я увеличивается значительнее, так как уменьшается Е (1.1) и разность U – E увеличивается в большей степени (обычно Е » 0,9 U).

Тормозные режимы.

Тормозные режимы двигателя имеют место тогда, когда электромагнитный момент, развиваемый двигателем, действует против направления вращения якоря. Они могут возникать в процессе работы двигателя при изменении условий работы или создаваться искусственно с целью быстрого уменьшения скорости, остановки или реверсирования двигателя.

У двигателя параллельного возбуждения возможны три тормозных режима: генераторное торможение с возвратом энергии в сеть, торможение противовключением и динамическое торможение.

Генераторное торможение возникает в тех случаях, когда частота вращения якоря n становится больше частоты вращения при идеальном (т.е. при М пр = 0) холостом ходе n x (n>n x). Переход в этот режим из режима двигателя возможен, например, при спуске груза, когда момент, создаваемый грузом, приложен к якорю в том же направлении, что и электромагнитный момент двигателя, т.е. тогда, когда момент нагрузки действует согласно с электромагнитным моментом двигателя и он набирает скорость, большую чем n x . Если n>n x , то Е>U c (где U c – напряжение сети) и ток двигателя изменяет свой знак (1.4) – электромагнитный момент из вращающего становится тормозным, а машина из режима двигателя переходит в режим генератора и отдает энергию в сеть (рекуперация энергии). Переход машины из двигательного режима в генераторный иллюстрируется механической характеристикой (рис. 1.30). Пусть в двигательном режиме a 1 – рабочая точка; ей соответствует момент М. Если частота вращения увеличивается, то рабочая точка по характеристике 1 из квадранта I переходит в квадрант II, например, в рабочую точку a 2 , которой соответствует частота вращения n΄ и тормозной момент – М΄.

Торможение противовключением возникает в работающем двигателе, когда направление тока в якоре или тока возбуждения переключается на противоположное. Электромагнитный момент при этом изменяет знак и становится тормозным.

Работе двигателя с противоположным направлением вращения соответствуют механические характеристики, располагающиеся в квадрантах II и III (например, естественная характеристика 2 на рис. 1.30).

Внезапный переход на эту характеристику практически недопустим, так как сопровождается чрезмерно большим броском тока и тормозного момента. По этой причине одновременно с переключением одной из обмоток в цепь якоря включается добавочное сопротивление R доб, ограничивающее ток якоря.

Механическая характеристика режима с R доб имеет большой наклон (прямая 3). При переходе в режим противовключения частота вращения n в первый момент измениться не может (из-за инерционности якоря) и рабочая точка из положения a 1 перейдет в положение a 3 на новой характеристике. Из-за появления М тор частота вращения n будет быстро падать до тех пор, пока рабочая точка a 3 не перейдет в положение a 4 , соответствующее остановке двигателя. Если в этот момент двигатель не отключить от источника питания, то якорь изменит направление вращения. Машина начнет работать в двигательном режиме с новым направлением вращения, а ее рабочая точка a 5 будет находиться на механической характеристике 3 в квадранте III.

Динамическое торможение возникает в тех случаях, когда якорь двигателя отключается от сети и замыкается на сопротивление динамического торможения R д.т. Уравнение характеристики (1.6) принимает вид:

n =

что соответствует семейству прямых 4 (при разных R д.т), проходящих через начало координат. При переключении в этот режим рабочая точка a 1 переходит на одну из характеристик 4, например, в точку a 6 , а затем перемещается по прямой 4 до нуля. Якорь двигателя тормозится до полной остановки. Изменением сопротивления R д.т можно регулировать ток якоря и скорость торможения.

Существует несколько возможных разновидностей построения эл моторов, работающих от источника постоянного напряжения. Принцип их действия одинаков, а отличия заключаются в особенностях подключения обмотки возбуждения (ОВ) и якоря (Я).

Свое название эл двигатель постоянного тока с параллельным возбуждением получил потому, что его обмотка Я и ОВ соединяются друг с другом именно таким образом. Электродвигатель такой разновидности обеспечивает нужные режимы, превосходя изделия последовательного и смешанного типов тогда, когда требуется практически постоянная скорость его функционирования.

  • Заключение

Построение двигателя и область его применения

Схема электродвигателя рассматриваемого типа изображена ниже.

Из нее следует:

  • общий ток, потребляемый эл мотором от источника, составляет I = I Я + I В, где I Я, I В – токи через якорь, обмотку возбуждения, соответственно;
  • одновременно I В не зависит от I Я, то есть не зависит от нагрузки.

Принцип действия электромотора определяет его тяговые свойства. Устройство применяется тогда, когда пуск не требует обеспечения высокого момента, то есть когда режимы эксплуатации приводных механизмов не предполагают создание больших стартовых нагрузок. Это типично для станков и вентиляторов.

Для практики ценны такие полезные тяговые параметры подобных эл механизмов как

  • устойчивость работы при колебаниях нагрузки;
  • высокая экономичность из-за того, что I Я не протекает через ОВ.

Пуск при недостаточном моменте обеспечивается переходом на схему смешанного типа.

Поведение электромотора при изменении нагрузок

Механическая характеристика показывает устойчивость работы электромотора в широком диапазоне изменения нагрузок, описывая зависимость момента, создаваемого эл двигателем, от скорости функционирования вала.

Тяговые характеристики механизма рассматриваемого типа позволяют сохранить величину момента при значительных изменения числа оборотов вала. Обычно тяговые параметры агрегата должен обеспечивать уменьшение этого параметра не более чем на 5 %. Несложное исследование демонстрирует: тормозные параметры из-за обратимости процессов оказываются аналогичными. Эти положения распространяются также на случай применения смешанного возбуждения.

Говоря иными словами, для такого эл мотора характерна жесткая характеристика. Такой характер работы считается важным преимуществом агрегата рассматриваемого типа.

Разновидности подходов к регулированию частоты вращения


Принцип действия параллельного включения обмоток обеспечивает плавный пуск в сочетании с большим диапазоном изменения количества оборотов вала в процессе работы с помощью реостатов. Они же обеспечивают нормальный пуск двигателя ограничением тока.

Для агрегатов параллельного типа используются способы управления скоростью функционирования изменением:

  • магнитного потока главных полюсов;
  • сопротивления цепи якоря;
  • подаваемого на него напряжения.

Объектом воздействия являются обмотка возбуждения, обмотка якоря, его рабочее напряжение.

Изменение магнитного потока осуществляется с помощью последовательного реостата R Р. При увеличении его сопротивления ОВ пропускает меньший ток, что сопровождается уменьшением магнитного потока. Внешним проявлением такого действия становится наращивание числа оборотов Я на холостом ходу. Исследование показывает, что происходит увеличение угла наклона характеристики.

Второй принцип основан на включении в цепь питания якоря дополнительного последовательного регулировочного реостата. При увеличении его сопротивления скорость вращения Я уменьшается, тогда как его естественная механическая характеристика приобретает больший наклон. Из-за последовательного включения с основной обмоткой реостата дополнительного сопротивления, на котором рассеивается значительная мощность, происходит заметное падение экономичности.

Третий принцип сопровождается определенным усложнением схемных решений и требует применения отдельного регулируемого источника питания с сохранением возможности раздельного регулирования. В случае его применения в реальных условиях возможно только уменьшение частоты вращения вала.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения реализует третий подход к регулированию и интересен тем, что ОВ и М питаются от разных источников, схема его представлена ниже.


Для моторов в данном конструктивном исполнении I в устанавливается неизменным, а меняется только напряжение, приложенное к М. Это сопровождается изменением числа оборотов вала на холостом ходу, но жесткость характеристики изменений не претерпевает.

Принцип действия такого агрегата за счет независимого функционирования двух источников оказывается более сложным. Однако, его применение дает такие важные для практики преимущества как

  • плавное экономичное управление скоростью функционирования с большой глубиной;
  • пуск мотора при пониженном напряжении без реостата.

В случае, если пуск происходит на нормальном напряжении, реостат ограничивает величину I в.

Исследование показывает, что максимальное значение числа оборотов ограничено только сопротивлением М, а минимальное — условиями отвода выделяемого тепла в процессе работы.

Характеристики в части энергопотребления и скорости срабатывания управляющей системы улучшаются в случае последовательного включения с М различных тиристорных регуляторов. Для установки числа оборотов вала и их стабилизации в процессе приведения в движение различных механизмов находят применение различные способы. Их общим характерным признаком является включение тиристорного регулятора в цепь частотной отрицательной обратной связи. Пуск такого агрегата требует реализации специальных процедур.

Заключение

Двигатель с параллельным возбуждением является очень гибким приводным механизмом и может использоваться в очень большом количестве областей там, где не требуются большие моменты при старте. Имеет несложные и надежные цепи регулирования скорости вращения, отличается простотой запуска.

Двигатель с параллельным возбуждением является наилучшим среди двигателей постоянного тока для привода механизмов, требующих почти постоянной частоты вращения и в то же время экономичного регулирования скорости. Схема этого двигателя показана на рис. 4-25.

Рис. 4-25. Двигатель параллельного возбуждения.

Зажимы пускового реостата обозначаются: Л - присоединяемый к линии (питающей сети); М - к зажимам обмотки возбуждения и Я - к зажимам якоря. Черными кружками (рис. 4-25) обозначены рабочие контакты, а пропуски между ними соответствуют секциям сопротивлений реостата. Металлическая дуга 3 при работе двигателя постоянно соединяет зажим Л с зажимами шунтового реостата, регулирующего ток возбуждения Перед замыканием рубильника Необходимо убедиться, что рычаг (подвижный контакт) 1 пускового реостата 2 стоит на холостом контакте 0. Подвижный контакт шунтового реостата в цепи возбуждения должен находиться в крайнем левом положении, при котором сопротивление реостата минимально.

При замыкании рубильника и переводе рычага пускового реостата на первый из рабочих контактов ток двигателя разветвляется на ток якоря и ток обмотки возбуждения

Таким образом, ток в питающей цепи

Первый бросок тока в зависимости от величины пускового сопротивления Под действием начального вращающего момента якорь начинает вращаться и с нарастанием скорости ток якоря уменьшается. Тогда рычаг пускового реостата, может быть переведен на второй контакт. При этом ток якоря, увеличившись броском, вызовет увеличение вращающего момента и дальнейшее приращение скорости, а затем вновь начинает уменьшаться. Тогда рычаг реостата переводят на следующий контакт и т. д. Пуск заканчивается, когда все сопротивление выведено и на якорь подано полное напряжение Сопротивление пускового реостата обычно рассчитано на кратковременную работу пуска и оставлять рукоятку реостата на промежуточных контактах длительно нельзя.

Рис. 4-26. Скоростные характеристики двигателя параллельного возбуждения.

Чем быстрее нарастает противо-э. д. с. якоря, тем скорее, уменьшается ток и тем меньше нагрев обмотки якоря. Поэтому пуск производят всегда при наибольшем токе возбуждения, замыкая, накоротко сопротивление регулировочного реостата (рис. 4-25). Тогда магнитный поток машины Ф и противо-э. д. с. будут максимальны. Кроме того, электродвигатель при пуске должен развивать повышенный вращающий, момент, а это может быть также при наибольшем магнитном потоке формула (4-8)].

Перед отключением двигателя переводят рычаг пускового реостата на нулевой контакт, а затем размыкают рубильник. Этим исключается подгорание контактов рубильника.

Скоростная характеристика двигателя при показана на рис. 4-26 кривой 1. При отсутствии механической нагрузки ток холостого хода и скорости наибольшая:

При увеличении нагрузки (момента сопротивления) на валу двигателя частота вращения падает незначительно, так как автоматическое увеличение вращающего момента происходит за счет увеличения тока в цепи якоря который согласно уравнению (4-14а) резко возрастает при незначительном уменьшении противо-э. д. с. вследствие малой величины сопротивления цепи якоря Такая характеристика называется жесткой.

Рис. 4-27. Рабочце характеристики двигателя параллельного возбуждения.

При неизменном токе возбуждения магнитный поток Ф можно считать приблизительно постоянным, так как влияние реакции якоря незначительно.

Тогда вращающий момент двигателя

приблизительно пропорционален току Поэтому если отложить М по оси абсцисс на рис. 4-26, то получится механическая характеристика двигателя, т. е.

Очень удобны для пользования рабочие характеристики (рис. 4-27), даваемые в каталогах и описаниях электродвигателя. Это

при , где - к. п. д. двигателя, а - полезная мощность на валу.

Развиваемая на валу мощность двигателя

а вращающий момент

При неизменной частоте вращения зависимость была бы прямой линией, проходящей через начало координат. Однако скорость при увеличении падает и момент не пропорционален Ток при неизменном U пропорционален мощности в цепи питания Так как потери двигателя малы, то ток приблизительно пропорционален .

Регулирование скорости двигателя с параллельным возбуждением обычно производится изменением тока возбуждения. Этот способ дает экономичное плавное регулирование в пределах 1: 1,5, а в специальном исполнении - до 1:8. Регулирование происходит следующим образом. Вращающий момент двигателя при Ф = const пропорционален току а ток

Вследствие малой величины падение напряжения в цепи якоря невелико. Поэтому при постоянных значениях U и якоря может значительно возрасти при небольшом уменьшении противо-э. д. с.

Например, при и при токе якоря противо-э. д. с. . Если противо-э. д. с. уменьшится всего на 10 В (примерно на 5%) и будет , то ток якоря , т. е. увеличится в 3 раза.

Таким образом, если при некоторой постоянной нагрузке и частоте вращения уменьшить ток возбуждения например на 5%, то. на столько же сразу уменьшатся магнитный поток Ф и противо-э. д. с. Е. Это вызовет резкое увеличение тока якоря и вращающего момента, причем избыточный момент пойдет на ускорение вращения якоря. Однако по мере нарастания скорости якоря противо-э. д. с. снова увеличится, ток якоря уменьшится до величины, при которой вращающий момент примет прежнее значение. Таким образом, при равенстве установится новая постоянная частота вращения, большая прежней.

При таком способе регулирования потери энергии в регулировочном реостате (мощность потерь Гвгв) очень малы, так как составляет всего

Этот способ позволяет изменять частоту вращения двигателя в сторону ее увеличения выше номинальной.

Если при неизменной нагрузке на валу двигателя включить добавочное сопротивление гл последовательно с обмоткой якоря, то в первый момент ток якоря уменьшится, отчего уменьшится вращающий момент и, так как момент сопротивления окажется больше, скорость уменьшится. Однако вследствие уменьшения скорости и противо-э. д. с. ток якоря станет возрастать, будет возрастать вращающий момент и при равенстве моментов дальнейшее снижение скорости прекратится.

Двигатель будет продолжать работать с постоянной, но пониженной частотой вращения. Этот способ - регулирования неэкономичен вследствие значительных потерь энергии в сопротивлении реостата.

 

Возможно, будет полезно почитать: